Bespoke Diblock Copolymer Nanoparticles Enable the Production of Relatively Stable Oil-in-Water Pickering Nanoemulsions

Langmuir. 2017 Nov 7;33(44):12616-12623. doi: 10.1021/acs.langmuir.7b02267. Epub 2017 Oct 26.

Abstract

Sterically stabilized diblock copolymer nanoparticles with an intensity-average diameter of 25 nm are prepared in the form of a concentrated aqueous dispersion using polymerization-induced self-assembly (PISA). The addition of n-dodecane followed by high-shear homogenization produces n-dodecane-in-water Pickering macroemulsions of 22-46 μm diameter. If the nanoparticles are present in sufficient excess, then subsequent processing using a high-pressure microfluidizer leads to the formation of Pickering nanoemulsions with a mean oil droplet diameter below 200 nm. The size of these Pickering nanoemulsions can be tuned by systematically varying the nanoparticle concentration, applied pressure, number of passes, and oil volume fraction. High-internal-phase emulsions can also be achieved by increasing the n-dodecane volume fraction up to 0.80. TEM studies of (dried) n-dodecane droplets confirm the presence of intact nanoparticles and suggest a relatively high surface coverage, which is consistent with model packing calculations based on radius ratios. Such Pickering nanoemulsions proved to be surprisingly stable with respect to Ostwald ripening, with no significant change in the mean DLS droplet diameter after storage for approximately 4 months at 20 °C.

Publication types

  • Research Support, Non-U.S. Gov't