Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perineural invasion and associated pain in pancreatic cancer

Key Points

  • Perineural invasion (PNI) is the process through which cancer cells invade the perineural spaces of surrounding nerves and is not simply the movement of cancer cells along a path of low resistance, as was previously thought. PNI is a directed process that involves many signalling molecules from various signalling pathways; these signalling molecules are produced by both the cancer cells and the nerves. Once the cancer cells have invaded the nerves, they are able to thrive within the neuronal spaces. This constitutes a means for the cancer cells to spread to distant locations.

  • The incidence of PNI is particularly high in pancreatic cancer. Although the exact cause for this increased affinity is as yet unclear, the strong neurotropic effects of pancreatic cancer cells are thought to contribute to this phenomenon. Additionally, reciprocal signalling between the pancreatic cancer cells and the surrounding nerves leads to neurogenesis, as well as the increased growth of pancreatic cancer cells.

  • PNI also contributes to the generation of the pain that is experienced by pancreatic cancer patients, and many of the signalling molecules that are involved in PNI are also known to be involved in pain signalling. Thus, we hypothesize that agents targeting these signalling pathways may have the potential to prevent PNI and may help to alleviate pain in patients with pancreatic cancer.

Abstract

Perineural invasion (PNI) is a prominent characteristic of pancreatic cancer. PNI is a process whereby cancer cells invade the surrounding nerves, thus providing an alternative route for metastatic spread and pain generation. PNI is thought to be an indicator of aggressive tumour behaviour and has been shown to correlate with poor prognosis of patients with pancreatic cancer. Recent studies demonstrated that some signalling molecules and pathways that are involved in PNI are also involved in pain generation. Targeting these signalling pathways has shown some promise in alleviating pain and reducing PNI, which could potentially improve treatment outcomes for patients with pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perineural invasion in pancreatic cancer.
Figure 2: Signalling molecules involved in the process of perineural invasion in pancreatic cancer.
Figure 3: Signalling molecules involved in pain generation in pancreatic cancer.

Similar content being viewed by others

References

  1. Lesnik, D. J. & Boey, H. P. Perineural invasion of the facial nerve by a cutaneous squamous cell cancer: a case report. Ear Nose Throat J. 83, 826–827 (2004).

    Google Scholar 

  2. Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Demir, I. E. et al. Neural invasion in pancreatic cancer: the past, present and future. Cancers 2, 1513–1527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batsakis, J. G. Nerves and neurotropic carcinomas. Ann. Otol. Rhinol. Laryngol. 94, 426–427 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Bockman, D. E., Buchler, M. & Beger, H. G. Interaction of pancreatic ductal carcinoma with nerves leads to nerve damage. Gastroenterology 107, 219–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Ceyhan, G. O. et al. Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem. Biophys. Res. Commun. 374, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ceyhan, G. O. et al. The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann. Surg. 244, 274–281 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodin, A. E., Larson, D. L. & Roberts, D. K. Nature of the perineural space invaded by prostatic carcinoma. Cancer 20, 1772–1779 (1967).

    Article  CAS  PubMed  Google Scholar 

  9. Marchesi, F., Piemonti, L., Mantovani, A. & Allavena, P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 21, 77–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ceyhan, G. O., Michalski, C. W., Demir, I. E., Muller, M. W. & Friess, H. Pancreatic pain. Best Pract. Res. Clin. Gastroenterol. 22, 31–44 (2008).

    Article  PubMed  Google Scholar 

  11. Hirai, I. et al. Perineural invasion in pancreatic cancer. Pancreas 24, 15–25 (2002).

    Article  Google Scholar 

  12. Liu, B. & Lu, K. Y. Neural invasion in pancreatic carcinoma. Hepatobiliary Pancreat. Dis. Int. 1, 469–476 (2002).

    PubMed  Google Scholar 

  13. Pour, P. M., Bell, R. H. & Batra, S. K. Neural invasion in the staging of pancreatic cancer. Pancreas 26, 322–325 (2003).

    Article  PubMed  Google Scholar 

  14. Ayala, G. E. et al. Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res. 64, 6082–6090 (2004).

    Article  CAS  Google Scholar 

  15. Ayala, G. E. et al. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49, 213–223 (2001). This article describes the co-culture of DRGs and cancer cells as an experimental model for studying PNI. The study demonstrated reciprocal signalling between prostate cancer cells and neurites.

    Article  CAS  PubMed  Google Scholar 

  16. Maru, N., Ohori, M., Kattan, M. W., Scardino, P. T. & Wheeler, T. M. Prognostic significance of the diameter of perineural invasion in radical prostatectomy specimens. Hum. Pathol. 32, 828–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Horn, A., Dahl, O. & Morild, I. Venous and neural invasion as predictors of recurrence in rectal adenocarcinoma. Dis. Colon Rectum 34, 798–804 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Huh, J. W., Kim, H. R. & Kim, Y. J. Prognostic value of perineural invasion in patients with stage II colorectal cancer. Ann. Surg. Oncol. 17, 2066–2072 (2010).

    Article  PubMed  Google Scholar 

  19. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Cowan, W. K. et al. The pathological and biological nature of screen-detected breast carcinomas: a morphological and immunohistochemical study. J. Pathol. 182, 29–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Dunn, M. & Morgan, M. B. Perineural invasion progressing to leptomeningeal carcinomatosis: is the absence of peripheral nerves an important sign? J. Am. Acad. Dermatol. 62, 270–276 (2010).

    Article  PubMed  Google Scholar 

  22. Duraker, N., Sisman, S. & Can, G. The significance of perineural invasion as a prognostic factor in patients with gastric carcinoma. Surg. Today 33, 95–100 (2003).

    Article  PubMed  Google Scholar 

  23. Haddad, R. I. & Shin, D. M. Recent advances in head and neck cancer. N. Engl. J. Med. 359, 1143–1154 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kurtz, K. A., Hoffman, H. T., Zimmerman, M. B. & Robinson, R. A. Perineural and vascular invasion in oral cavity squamous carcinoma: increased incidence on re-review of slides and by using immunohistochemical enhancement. Arch. Pathol. Lab. Med. 129, 354–359 (2005).

    PubMed  Google Scholar 

  25. Scartozzi, M. et al. Lymphatic, blood vessel and perineural invasion identifies early-stage high-risk radically resected gastric cancer patients. Br. J. Cancer 95, 445–449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shirai, K. et al. Perineural invasion is a prognostic factor in intrahepatic cholangiocarcinoma. World J. Surg. 32, 2395–2402 (2008).

    Article  PubMed  Google Scholar 

  27. Su, C. H. et al. Factors influencing postoperative morbidity, mortality, and survival after resection for hilar cholangiocarcinoma. Ann. Surg. 223, 384–394 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, T. et al. Perineural invasion by ductal adenocarcinoma of the pancreas. J. Surg. Oncol. 65, 164–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Ceyhan, G. O. et al. Nerve growth factor and artemin are paracrine mediators of pancreatic neuropathy in pancreatic adenocarcinoma. Ann. Surg. 251, 923–931 (2010).

    Article  PubMed  Google Scholar 

  30. Stolinski, C. Structure and composition of the outer connective tissue sheaths of peripheral nerve. J. Anat. 186, 123–130 (1995).

    PubMed  PubMed Central  Google Scholar 

  31. Badger, S. A. et al. The role of surgery for pancreatic cancer: a 12-year review of patient outcome. Ulster Med. J. 79, 70–75 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, J. W. et al. Predicting patient survival after pancreaticoduodenectomy for malignancy: histopathological criteria based on perineural infiltration and lymphovascular invasion. HPB (Oxford) 12, 101–108 (2010).

    Article  Google Scholar 

  33. Garcea, G. et al. Survival following curative resection for pancreatic ductal adenocarcinoma. A systematic review of the literature. JOP 9, 99–132 (2008).

    PubMed  Google Scholar 

  34. Meduri, F. et al. Pancreatic cancer and retroperitoneal neural tissue invasion. Its implication for survival following radical surgery. Zentralbl. Pathol. 140, 277–279 (1994).

    CAS  PubMed  Google Scholar 

  35. Mossner, J. What's new in therapy of pancreatic cancer? Dig. Dis. 28, 679–683 (2010).

    Article  PubMed  Google Scholar 

  36. Perini, M. V. et al. Clinical and pathologic prognostic factors for curative resection for pancreatic cancer. HPB (Oxford) 10, 356–362 (2008).

    Article  CAS  Google Scholar 

  37. Dai, H. et al. Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Hum. Pathol. 38, 299–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gil, Z. et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J. Natl Cancer Inst. 102, 107–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ketterer, K. et al. Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin. Cancer Res. 9, 5127–5136 (2003).

    CAS  PubMed  Google Scholar 

  40. Zhu, Z. et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J. Clin. Oncol. 17, 2419–2428 (1999). The first study to demonstrate the involvement of the NGF signalling pathway in PNI and pain generation in pancreatic cancer.

    Article  CAS  PubMed  Google Scholar 

  41. Okada, Y., Eibl, G., Duffy, J. P., Reber, H. A. & Hines, O. J. Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer. Surgery 134, 293–299 (2003).

    Article  PubMed  Google Scholar 

  42. Okada, Y. et al. Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells. Clin. Exp. Metastasis 21, 285–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Marchesi, F. et al. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res. 68, 9060–9069 (2008). This study showed for the first time that CX3CR1 is involved in PNI in pancreatic cancer.

    Article  CAS  PubMed  Google Scholar 

  44. Singh, P. K. et al. Platelet-derived growth factor receptor β-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res. 67, 5201–5210 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Swanson, B. J. et al. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Cancer Res. 67, 10222–10229 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Miknyoczki, S. J. et al. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int. J. Cancer 81, 417–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Schneider, M. B. et al. Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer. J. Histochem. Cytochem. 49, 1205–1210 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Reichardt, L. F. Neurotrophin-regulated signalling pathways. Phil. Trans. R. Soc. B 361, 1545–1564 (2006).

    Article  CAS  Google Scholar 

  49. Arevalo, J. C. & Wu, S. H. Neurotrophin signaling: many exciting surprises! Cell. Mol. Life Sci. 63, 1523–1537 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Schweigreiter, R. The dual nature of neurotrophins. Bioessays 28, 583–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Patapoutian, A. & Reichardt, L. F. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Barker, P. A. p75NTR: a study in contrasts. Cell Death Differ. 5, 346–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Chao, M. V. The p75 neurotrophin receptor. J. Neurobiol. 25, 1373–1385 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Hempstead, B. L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Cornell, R. J., Rowley, D., Wheeler, T., Ali, N. & Ayala, G. Neuroepithelial interactions in prostate cancer are enhanced in the presence of prostatic stroma. Urology 61, 870–875 (2003).

    Article  PubMed  Google Scholar 

  56. Malin, S. A., Davis, B. M. & Molliver, D. C. Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nature Protoc. 2, 152–160 (2007).

    Article  CAS  Google Scholar 

  57. Tonge, D. A. et al. Effects of extracellular matrix components on axonal outgrowth from peripheral nerves of adult animals in vitro. Exp. Neurol. 146, 81–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Klesse, L. J., Meyers, K. A., Marshall, C. J. & Parada, L. F. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells. Oncogene 18, 2055–2068 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, Z. et al. Nerve growth factor and enhancement of proliferation, invasion, and tumorigenicity of pancreatic cancer cells. Mol. Carcinog. 35, 138–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Ma, J., Jiang, Y., Sun, Y. & Zhao, X. Expression of nerve growth factor and tyrosine kinase receptor A and correlation with perineural invasion in pancreatic cancer. J. Gastroenterol. Hepatol. 23, 1852–1859 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Miknyoczki, S. J. et al. The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin. Cancer Res. 8, 1924–1931 (2002).

    CAS  PubMed  Google Scholar 

  62. Zhu, Z. W. et al. Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin. Cancer Res. 7, 105–112 (2001).

    CAS  PubMed  Google Scholar 

  63. Friess, H. et al. Nerve growth factor and its high-affinity receptor in chronic pancreatitis. Ann. Surg. 230, 615–624 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dang, C., Zhang, Y., Ma, Q. & Shimahara, Y. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer. J. Gastroenterol. Hepatol. 21, 850–858 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, W. et al. Patterns of expression and function of the p75(NGFR) protein in pancreatic cancer cells and tumours. Eur. J. Surg. Oncol. 35, 826–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Sclabas, G. M. et al. Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin. Cancer Res. 11, 440–449 (2005).

    CAS  PubMed  Google Scholar 

  67. Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  Google Scholar 

  68. Takahashi, M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 12, 361–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Ito, Y. et al. Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138, 788–794 (2005).

    Article  PubMed  Google Scholar 

  70. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

  71. Hedin, K. E. Chemokines: new, key players in the pathobiology of pancreatic cancer. Int. J. Gastrointest. Cancer 31, 23–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Marchesi, F. et al. Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J. Neuroimmunol. 224, 39–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20, 1150–1160 (2004).

    Article  PubMed  Google Scholar 

  74. Muller, M. W. et al. Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer. Int. J. Cancer 121, 2421–2433 (2007).

    Article  PubMed  CAS  Google Scholar 

  75. Bloomston, M., Zervos, E. E. & Rosemurgy, A. S. Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann. Surg. Oncol. 9, 668–674 (2002).

    Article  PubMed  Google Scholar 

  76. Takahashi, H. et al. Antiproteases in preventing the invasive potential of pancreatic cancer cells. JOP 8, 501–508 (2007).

    PubMed  Google Scholar 

  77. Pryczynicz, A., Guzinska-Ustymowicz, K., Dymicka-Piekarska, V., Czyzewska, J. & Kemona, A. Expression of matrix metalloproteinase 9 in pancreatic ductal carcinoma is associated with tumor metastasis formation. Folia Histochem. Cytobiol. 45, 37–40 (2007).

    CAS  PubMed  Google Scholar 

  78. Zhi, Y. H., Song, M. M., Wang, P. L., Zhang, T. & Yin, Z. Y. Suppression of matrix metalloproteinase-2 via RNA interference inhibits pancreatic carcinoma cell invasiveness and adhesion. World J. Gastroenterol. 15, 1072–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Okada, Y. et al. Experimental implication of celiac ganglionotropic invasion of pancreatic-cancer cells bearing c-ret proto-oncogene with reference to glial-cell-line-derived neurotrophic factor (GDNF). Int. J. Cancer 81, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Koide, N. et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin. Cancer Res. 12, 2419–2426 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Hustinx, S. R. et al. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression. Cancer Biol. Ther. 3, 1254–1261 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Nagata, S. et al. CD74 is a novel prognostic factor for patients with pancreatic cancer receiving multimodal therapy. Ann. Surg. Oncol. 16, 2531–2538 (2009).

    Article  PubMed  Google Scholar 

  83. Abiatari, I. et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma. Mol. Cancer Ther. 8, 1494–1504 (2009). This study establishes a new ex vivo co-culture model for PNI that allows the study of the differences between highly nerve-invasive and non-invasive pancreatic cancer cells.

    Article  CAS  PubMed  Google Scholar 

  84. Corson, T. W., Huang, A., Tsao, M. S. & Gallie, B. L. KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene 24, 4741–4753 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Carleton, M. et al. RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol. Cell. Biol. 26, 3853–3863 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harding, M. A. & Theodorescu, D. RhoGDI signaling provides targets for cancer therapy. Eur. J. Cancer 46, 1252–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, B., Zhang, Y., Dagher, M. C. & Shacter, E. Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res. 65, 6054–6062 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Y. & Zhang, B. D4-GDI, a Rho GTPase regulator, promotes breast cancer cell invasiveness. Cancer Res. 66, 5592–5598 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Li, Z. et al. Overexpression of synuclein-γ in pancreatic adenocarcinoma. Cancer 101, 58–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Hibi, T. et al. Synuclein-γ is closely involved in perineural invasion and distant metastasis in mouse models and is a novel prognostic factor in pancreatic cancer. Clin. Cancer Res. 15, 2864–2871 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ahmad, M., Attoub, S., Singh, M. N., Martin, F. L. & El-Agnaf, O. M. γ-synuclein and the progression of cancer. FASEB J. 21, 3419–3430 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Trapp, B. D., Andrews, S. B., Cootauco, C. & Quarles, R. The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J. Cell Biol. 109, 2417–2426 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Kameda, K. et al. Expression of highly polysialylated neural cell adhesion molecule in pancreatic cancer neural invasive lesion. Cancer Lett. 137, 201–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Schreiber, S. C. et al. Polysialylated NCAM represses E-cadherin-mediated cell-cell adhesion in pancreatic tumor cells. Gastroenterology 134, 1555–1566 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Tezel, E., Kawase, Y., Takeda, S., Oshima, K. & Nakao, A. Expression of neural cell adhesion molecule in pancreatic cancer. Pancreas 22, 122–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Ben, Q. W. et al. Positive expression of L1-CAM is associated with perineural invasion and poor outcome in pancreatic ductal adenocarcinoma. Ann. Surg. Oncol. 17, 2213–2221 (2010).

    Article  PubMed  Google Scholar 

  97. Demir, I. E. et al. The microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal plasticity. Neurogastroenterol. Motil. 22, 480–490, e112–e113 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Lussier, D., Huskey, A. G. & Portenoy, R. K. Adjuvant analgesics in cancer pain management. Oncologist 9, 571–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Mantyh, P. W., Clohisy, D. R., Koltzenburg, M. & Hunt, S. P. Molecular mechanisms of cancer pain. Nature Rev. Cancer 2, 201–209 (2002).

    Article  CAS  Google Scholar 

  100. de Leon-Casasola, O. A. Critical evaluation of chemical neurolysis of the sympathetic axis for cancer pain. Cancer Control 7, 142–148 (2000). An overview of the different types of neurolytic blocks available and the pros and cons that are associated with them.

    Article  CAS  PubMed  Google Scholar 

  101. Kaufman, M. et al. Efficacy of endoscopic ultrasound-guided celiac plexus block and celiac plexus neurolysis for managing abdominal pain associated with chronic pancreatitis and pancreatic cancer. J. Clin. Gastroenterol. 44, 127–134 (2010).

    Article  PubMed  Google Scholar 

  102. Vranken, J. H., Zuurmond, W. W. & de Lange, J. J. Increasing the efficacy of a celiac plexus block in patients with severe pancreatic cancer pain. J. Pain Symptom Manage. 22, 966–977 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, I. Y. & Oraee, S. A modified approach to transcrural celiac plexus block. Reg. Anesth. Pain Med. 30, 303–307 (2005).

    Article  PubMed  Google Scholar 

  104. di Mola, F. F. & di Sebastiano, P. Pain and pain generation in pancreatic cancer. Langenbecks Arch. Surg. 393, 919–922 (2008).

    Article  PubMed  Google Scholar 

  105. Lindsay, T. H. et al. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain 119, 233–246 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Zhu, Y. et al. Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis. Gastroenterology 141, 370–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Nilius, B., Owsianik, G., Voets, T. & Peters, J. A. Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Jara-Oseguera, A., Simon, S. A. & Rosenbaum, T. TRPV1: on the road to pain relief. Curr. Mol. Pharmacol. 1, 255–269 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hartel, M. et al. Vanilloids in pancreatic cancer: potential for chemotherapy and pain management. Gut 55, 519–528 (2006). The first paper to report that TRPV1 expression correlates with the severity of pain suffered by patients with pancreatic cancer; patients whose tumours had more TRPV1-positive nerves infiltrated by pancreatic cancer cells had high pain scores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pingle, S. C., Matta, J. A. & Ahern, G. P. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb. Exp. Pharmacol. 179, 155–171 (2007).

    Article  CAS  Google Scholar 

  111. Anand, U. et al. The effect of neurotrophic factors on morphology, TRPV1 expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci. Lett. 399, 51–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Liddle, R. A. The role of transient receptor potential vanilloid 1 (TRPV1) channels in pancreatitis. Biochim. Biophys. Acta 1772, 869–878 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Amaya, F. et al. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur. J. Neurosci. 20, 2303–2310 (2004).

    Article  PubMed  Google Scholar 

  114. Malin, S. A. et al. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J. Neurosci. 26, 8588–8599 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nature Med. 15, 802–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Stosser, S., Schweizerhof, M. & Kuner, R. Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions. J. Mol. Med. 89, 321–329 (2011).

    Article  PubMed  CAS  Google Scholar 

  117. Abdiche, Y. N., Malashock, D. S. & Pons, J. Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors. Protein Sci. 17, 1326–1335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hefti, F. F. et al. Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol. Sci. 27, 85–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 363, 1521–1531 (2010).

    Article  CAS  Google Scholar 

  120. Watson, J. J., Allen, S. J. & Dawbarn, D. Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs 22, 349–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Wood, J. N. Nerve growth factor and pain. N. Engl. J. Med. 363, 1572–1573 (2010).

    Article  PubMed  Google Scholar 

  122. Cattaneo, A. et al. Functional blockade of tyrosine kinase A in the rat basal forebrain by a novel antagonistic anti-receptor monoclonal antibody. J. Neurosci. 19, 9687–9697 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Covaceuszach, S., Cattaneo, A. & Lamba, D. Neutralization of NGF-TrkA receptor interaction by the novel antagonistic anti-TrkA monoclonal antibody MNAC13: a structural insight. Proteins 58, 717–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Ugolini, G., Marinelli, S., Covaceuszach, S., Cattaneo, A. & Pavone, F. The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proc. Natl Acad. Sci. USA 104, 2985–2990 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Wehrman, T. et al. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Watson, J. J. et al. TrkAd5: a novel therapeutic agent for treatment of inflammatory pain and asthma. J. Pharmacol. Exp. Ther. 316, 1122–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Dawbarn, D. et al. NGF receptor TrkAd5: therapeutic agent and drug design target. Biochem. Soc. Trans. 34, 587–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Sutherland, S. Peptibodies: the new cool technology. Drug Discov. Today 9, 683 (2004).

    Article  PubMed  Google Scholar 

  129. Wang, T., Yu, D. & Lamb, M. L. Trk kinase inhibitors as new treatments for cancer and pain. Expert Opin. Ther. Pat. 19, 305–319 (2009). An extensive review of small-molecule TRK kinase inhibitors that are being developed by pharmaceutical companies for the treatment of cancer and associated pain.

    Article  CAS  PubMed  Google Scholar 

  130. Wood, E. R. et al. Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg. Med. Chem. Lett. 14, 953–957 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Ghilardi, J. R. et al. Sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone 48, 389–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Tibes, R. et al. Phase I dose escalation study of the oral multi-CDK inhibitor PHA-848125. J. Clin. Oncol. 26 (Suppl.), Abstract 3531 (2008).

    Article  Google Scholar 

  133. Brasca, M. G. et al. Identification of N-1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydr o-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor. J. Med. Chem. 52, 5152–5163 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Caporali, S. et al. The cyclin-dependent kinase inhibitor PHA-848125 suppresses the in vitro growth of human melanomas sensitive or resistant to temozolomide, and shows synergistic effects in combination with this triazene compound. Pharmacol. Res. 61, 437–448 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Degrassi, A. et al. Efficacy of PHA-848125, a cyclin-dependent kinase inhibitor, on the K-Ras(G12D)LA2 lung adenocarcinoma transgenic mouse model: evaluation by multimodality imaging. Mol. Cancer Ther. 9, 673–681 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Albanese, C. et al. Dual targeting of CDK and tropomyosin receptor kinase families by the oral inhibitor PHA-848125, an agent with broad-spectrum antitumor efficacy. Mol. Cancer Ther. 9, 2243–2254 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Premkumar, L. S. Targeting TRPV1 as an alternative approach to narcotic analgesics to treat chronic pain conditions. AAPS J. 12, 361–370 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wong, G. Y. & Gavva, N. R. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res. Rev. 60, 267–277 (2009). An extensive review of TRPV1-targeted molecules and their activities and clinical development statuses.

    Article  CAS  PubMed  Google Scholar 

  139. Ghilardi, J. R. et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 25, 3126–3131 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Dorgham, K. et al. An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. J. Leukoc. Biol. 86, 903–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Yin, Q., Cheng, W., Cheng, M. Y., Fan, S. Z. & Shen, W. Intrathecal injection of anti-CX3CR1 neutralizing antibody delayed and attenuated pain facilitation in rat tibial bone cancer pain model. Behav. Pharmacol. 21, 595–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Cameron, J. L. et al. Factors influencing survival after pancreaticoduodenectomy for pancreatic cancer. Am. J. Surg. 161, 120–124 (1991).

    Article  CAS  PubMed  Google Scholar 

  143. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  144. Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N. & Depinho, R. A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 20, 1218–1249 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Kayahara, M. et al. An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging. Cancer 72, 2118–2123 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Shimada, K. et al. Intrapancreatic nerve invasion as a predictor for recurrence after pancreaticoduodenectomy in patients with invasive ductal carcinoma of the pancreas. Pancreas 40, 464–468 (2011).

    Article  PubMed  Google Scholar 

  147. Samkharadze, T. et al. Pigment epithelium-derived factor associates with neuropathy and fibrosis in pancreatic cancer. Am. J. Gastroenterol. 106, 968–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    Article  CAS  Google Scholar 

  149. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  Google Scholar 

  150. Freelove, R. & Walling, A. D. Pancreatic cancer: diagnosis and management. Am. Fam. Physician 73, 485–492 (2006).

    PubMed  Google Scholar 

  151. Kang, S. P. & Saif, M. W. Optimal second line treatment options for gemcitabine refractory advanced pancreatic cancer patients. Can we establish standard of care with available data? JOP 9, 83–90 (2008).

    PubMed  Google Scholar 

  152. Burris, H. A. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Campen, C. J., Dragovich, T. & Baker, A. F. Management strategies in pancreatic cancer. Am. J. Health Syst. Pharm. 68, 573–584 (2011).

    Article  PubMed  Google Scholar 

  154. Di Marco, M. et al. Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? Oncol. Rep. 23, 1183–1192 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Fung, M. C. & Sakata, T. What's new in pancreatic cancer treatment? J. Hepatobiliary Pancreat. Surg. 9, 61–75 (2002).

    Article  PubMed  Google Scholar 

  156. Li, J. & Saif, M. W. Advancements in the management of pancreatic cancer. JOP 10, 109–117 (2009).

    PubMed  Google Scholar 

  157. Sharma, C. et al. Adjuvant therapy of pancreatic cancer. Highlights from the “2011 ASCO Annual Meeting”. Chicago, IL, USA; June 3–4, 2011. JOP 12, 343–346 (2011).

    PubMed  Google Scholar 

  158. Helm, J. et al. Histologic characteristics enhance predictive value of American Joint Committee on Cancer staging in resectable pancreas cancer. Cancer 115, 4080–4089 (2009).

    Article  PubMed  Google Scholar 

  159. Pawlik, T. M. et al. Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer. Surgery 141, 610–618 (2007).

    Article  PubMed  Google Scholar 

  160. Washington, K. et al. Protocol for the examination of specimens from patients with carcinoma of the exocrine pancreas: protocol applies to all epithelial tumors of the exocrine pancreas. endocrine tumors and tumors of the ampulla of vater are not included. College of American Pathologists [online], (2009).

Download references

Acknowledgements

This work is dedicated to S. Greene and S. Salmon, who taught us just how tough perineural invasion by pancreatic cancer can be. We would also like to thank C. Nulsen for her invaluable and critical insights during the preparation of this manuscript. Research in the authors' laboratories was supported by grants from the US National Institutes of Health National Cancer Institute (grants CA140924 and CA109552), the American Association for Cancer Research Stand Up to Cancer programme and the US National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Perineurium

The connective tissue sheath that surrounds bundles of nerves known as fascicles.

Dorsal root ganglia

A mass of sensory afferent nerve cell bodies that is located on the dorsal root of the spinal cord, one on each side for each spinal nerve.

Neurolytic blocks

A process in which a neurolytic or analgesic agent is injected into or near nerves that are involved in pain signalling. Neurolytic blocks are used to combat chronic pain states or pain that is caused by cancer.

Coeliac plexus blocks

A process in which the nerves of the coeliac plexus are subjected to neurolysis using neurolytic agents, such as a 50–100% solution of alcohol or a 10% solution of phenol, that are injected into the coeliac plexus guided by ultrasound and computed tomography (CT) imaging.

Thermal hyperalgesia

Increased pain responses following an increase in temperature.

Tactile allodynia

Pain sensations caused by mechanical stimuli such as touch that usually do not invoke pain responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bapat, A., Hostetter, G., Von Hoff, D. et al. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11, 695–707 (2011). https://doi.org/10.1038/nrc3131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3131

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer