Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Modelling of Morphine Transport Across the Blood-Brain Barrier as a Cause of the Antinociceptive Effect Delay in Rats—A Microdialysis Study

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To quantify the contribution of distributional processes across the blood-brain barrier (BBB) to the delay in antinociceptive effect of morphine in rats.

Methods. Unbound morphine concentrations were monitored in venous blood and in brain extracellular fluid (ECF) using microdialysis (MD) and in arterial blood by regular sampling. Retrodialysis by drug was used for in vivo calibration of the MD probes. Morphine was infused (10 or 40 mg/kg) over 10 min intravenously. Nociception, measured by the electrical stimulation vocalisation method, and blood gas status were determined.

Results. The half-life of unbound morphine in striatum was 44 min compared to 30 min in venous and arterial blood (p < 0.05). The BBB equilibration of morphine, expressed as the ratio of areas under the curve between striatum and venous blood, was less than unity (0.28 ± 0.09 and 0.22 ± 0.17 for 10 and 40 mg/kg), respectively, indicating active efflux of morphine across the BBB. The concentration-effect relationship exhibited a clear hysterisis with an effect delay half-life of 32 and 5 min based on arterial blood and brain ECF concentrations, respectively.

Conclusions. Eighty five percent of the effect delay was caused by morphine transport across the BBB, indicating possible involvement of rate limiting mechanisms at the receptor level or distributional phenomena for the remaining effect delay of 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Mansour and S. J. Watson. Anatomical distribution of opioid receptors in mammalians: An overview. In H. Akil and E.J. Simon (eds), Opioids I, Springer-Verlag, Berlin, 1993, pp. 79–102.

    Google Scholar 

  2. B. E. Dahlström and L. K. Paalzow. Pharmacokinetics of morphine in plasma and discrete areas of the rat brain. J. Pharmacokinet. Biopharm. 3:293–302 (1975).

    Google Scholar 

  3. B. E. Dahlström, L. K. Paalzow, G. Segre, and A. J. Ågren. Relation between morphine pharmacokinetics and analgesia. J.Pharmacokinet. Biopharm. 6:41–53 (1978).

    Google Scholar 

  4. M. Gårdmark, M. Ekblom, R. Bouw, and M. Hammarlund-Udenaes. Quantification of effect delay and acute tolerance development to morphine in the rat. J. Pharmacol. Exp. Ther. 267: 1061–1067 (1993).

    Google Scholar 

  5. W. H. Oldendorf, S. Hyman, L. Braun, and S. Z. Oldendorf. Blood-brain barrier: Penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178:984–986 (1972).

    Google Scholar 

  6. T. A. Aasmundstad, J. Morland, and R. E. Paulsen. Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J. Pharmacol. Exp. Ther. 275:435–441 (1995).

    Google Scholar 

  7. U. Bickel, O. P. Schumacher, Y. S. Kang, and K. Voigt. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exp Ther. 278:107–113 (1996).

    Google Scholar 

  8. D. Wu, Y. S. Kang, U. Bickel, and W. M. Pardridge. Blood-brain barrier permeability to morphine-6-glucuronide is markedly reduced compared with morphine. Drug Metab Dispos. 25:768–771 (1997).

    Google Scholar 

  9. E. C. M. de Lange, M. Danhof, A. G. de Boer, and D. D. Breimer. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain. Res. Rev. 25:27–49 (1997).

    Google Scholar 

  10. W. F. Elmquist and R. J. Sawchuk. Application of microdialysis in pharmacokinetic studies. Pharm. Res. 14:267–288 (1997).

    Google Scholar 

  11. Y. Wang and D. F. Welty. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res. 13: 398–403 (1996).

    Google Scholar 

  12. M. Hammarlund-Udenaes, L. K. Paalzow, and E. C. M. de Lange. Drug equilibration across the blood-brain barrier–Pharmacokinetic considerations based on the microdialysis method. Pharm. Res. 14:128–134 (1997).

    Google Scholar 

  13. L. K. Paalzow. Measurement and modeling analgesic drug effect. In C. J. van Boxtel, N. H. G. Holford, and M. Danhof (eds), The in vivo study of drug action–Principles and applications of kinetic-dynamic modelling, Elsevier Science Publishers B.V., Amsterdam, 1992, pp. 133–153.

    Google Scholar 

  14. M. R. Bouw and M. Hammarlund-Udenaes. Methodological aspects of the use of a calibrator in in vivo microdialysis–further development of the retrodialysis method. Pharm. Res. 15:1673–1679 (1998).

    Google Scholar 

  15. M. N. Carroll and R. K. S. Lim. Observation on the neuropharmacology of morphine and morphinelike analgesia. Arch. Int. Pharmacodyn. Ther. 125:383–403 (1960).

    Google Scholar 

  16. M. Ekblom, M. Gårdmark, and U. M. Hammarlund. Estimation of unbound concentrations of morphine from microdialysate concentrations by use of nonlinear regression analysis in vivo and in vitro during steady state conditions. Life Sci. 51:449–460 (1992).

    Google Scholar 

  17. S. L. Beal and L. S. Sheiner. NONMEM user's guide. NONMEM Project Group, 1992, University of California at San Francisco: San Francisco.

    Google Scholar 

  18. E. N. Jonsson and M. O. Karlsson. Xpose–An S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed. 58:51–64 (1999).

    Google Scholar 

  19. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25: 358–371 (1979).

    Google Scholar 

  20. G. Skopp, L. Potsch, B. Ganssmann, R. Aderjan, and R. Mattern. A preliminary study on the distribution of morphine and its glucuronides in the subcompartments of blood. J Anal Toxicol. 22: 261–264 (1998).

    Google Scholar 

  21. R. Xie, M. Hammarlund-Udenaes, A. G. de Boer, and E. C. de Lange. The role of P-glycoprotein in blood-brain barrier transport of morphine: Transcortical microdialysis studies in mdr1a (-/-) and mdr1a (+/+) mice. Br. J. Pharmacol. 128:563–568 (1999).

    Google Scholar 

  22. M. Ekblom, M. Hammarlund-Udenaes, and L. K. Paalzow. Modeling of tolerance development and rebound effect during different intravenous administrations of morphine to rats. J. Pharmacol. Exp. Ther. 266:244–252 (1993).

    Google Scholar 

  23. D. M. Ouellet and G. M. Pollack. Pharmacodynamics and tolerance development during multiple intravenous bolus morphine administration in rats. J. Pharmacol. Exp. Ther. 281:713–720 (1997).

    Google Scholar 

  24. D. M. Ouellet and G. M. Pollack. Effect of prior morphine-3-glucuronide exposure on morphine disposition and antinociception. Biochem Pharmacol. 53:1451–1457 (1997).

    Google Scholar 

  25. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. Brouwer. Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharm. Res. 15: 599–605 (1998).

    Google Scholar 

  26. M. Gårdmark, A. U. Höglund, and M. Hammarlund-Udenaes. Aspects on tail-flick, hot-plate and electrical stimulation tests for morphine antinociception. Pharmacol. Toxicol. 83:252–258 (1998).

    Google Scholar 

  27. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. Brouwer. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug. Metab. Dispos. 27:827–834 (1999).

    Google Scholar 

  28. F. Stain, M. J. Barjavel, P. Sandouk, M. Plotkine, J. M. Scherrmann, and H. N. Bhargava. Analgesic response and plasma and brain extracellular fluid pharmacokinetics of morphine and morphine-6-beta-D-glucuronide in the rat. J. Pharmacol. Exp. Ther. 274(2): 852–857 (1995).

    Google Scholar 

  29. Y. Wang and R. J. Sawchuk. Zidovudine transport in the rabbit brain during intravenous and intracerebroventricular infusion. J. Pharm. Sci. 84:871–876 (1995).

    Google Scholar 

  30. C. K. Kuo, N. Hanioka, Y. Hoshikawa, K. Oguri, and H. Yoshimura. Species difference of site-selective glucuronidation of morphine. J. Pharmacobio-Dyn. 14:187–193 (1991).

    Google Scholar 

  31. M. Ekblom, M. Gårdmark, and M. Hammarlund-Udenaes. Pharmacokinetics and pharmacodynamics of morphine-3-glucuronide in rats and its influence on the antinociceptive effect of morphine. Biopharm. Drug Disp. 14:1–11 (1993).

    Google Scholar 

  32. M. Gårdmark, M. O. Karlsson, F. Jonsson, and M. Hammarlund-Udenaes. Morphine-3-glucuronide has a minor effect on morphine antinociception. Pharmacodynamic modeling. J. Pharm. Sci. 87:813–820 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouw, M.R., Gårdmark, M. & Hammarlund-Udenaes, M. Pharmacokinetic-Pharmacodynamic Modelling of Morphine Transport Across the Blood-Brain Barrier as a Cause of the Antinociceptive Effect Delay in Rats—A Microdialysis Study. Pharm Res 17, 1220–1227 (2000). https://doi.org/10.1023/A:1026414713509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026414713509

Navigation