Skip to main content
Log in

Perioperative Use of Intravenous Lidocaine

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Lidocaine is an amide local anaesthetic initially used intravenously as an antiarrhythmic agent. At some point it was proposed that intravenous lidocaine (IVL) had an analgesic effect that could be potentially beneficial in perioperative settings. Since these preliminary reports, a large body of evidence confirmed that IVL had anti-inflammatory and opiate-sparing effects, a combination of characteristics leading to an array of effects such as a decrease in postoperative pain and opiate consumption, and a reduction in the duration of digestive ileus. Additional studies demonstrated IVL to possess antithrombotic, antimicrobial and antitumoral effects. Beneficial effects of IVL have been characterized in abdominal surgery but remain controversial in other types of surgeries. Because the quality of evidence was limited, due to inconsistency, imprecision and study quality, recent conclusions from meta-analysis pooling together all types of surgery stated the uncertainty about IVL benefits. Additional indications such as the prevention of propofol-induced injection pain, prevention of hyperalgesia, protection against bronchial reactivity by bronchotracheal relaxation during surgery, and the increase in depth of general anaesthesia have since emerged. IVL is rapidly distributed in the body and metabolized by the liver. With the commonly recommended doses, lidocaine’s therapeutic index remains very high and the plasma concentrations stay largely below the cardiotoxic and neurotoxic threshold levels, a notion that may be used by clinicians to draw conclusions on the benefit-risk profile of IVL in comparison to other analgesic strategies. The purpose of this review is to address the pharmacokinetic and pharmacodynamic properties of lidocaine in healthy and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weinberg L, Peake B, Tan C, Nikfarjam M. Pharmacokinetics and pharmacodynamics of lignocaine: a review. World J Anesthesiol. 2015;4:17–29.

    Article  Google Scholar 

  2. Gilbert CR, Hanson IR, Brown AB, Hingson RA. Intravenous use of xylocaine. Curr Res Anesth Analg. 1951;30:301–13.

    Article  PubMed  CAS  Google Scholar 

  3. De Clive-Lowe SG, Desmond J, North J. Intravenous lignocaine anaesthesia. Anaesthesia. 1958;13(2):138–46.

    Article  Google Scholar 

  4. Philipps OC, Lyons WB, Harris LC, Nelson AT, Graff TD, Frazier TM. Intravenous lidocaine as an adjunct to general anesthesia: a clinical evaluation. Anesth Analg. 1960;39:317–22.

    Google Scholar 

  5. Helander EM, Webb MP, Bias M, Whang EE, Kaye AD, Urman RD. A comparison of multimodal analgesic approaches in institutional enhanced recovery after surgery protocols for colorectal surgery: pharmacological agents. J Laparoendosc Adv Surg Tech A. 2017;27:903–8.

    Article  PubMed  Google Scholar 

  6. Dunn LK, Durieux ME. Perioperative use of intravenous lidocaine. Anesthesiology. 2017;126:729–37.

    Article  PubMed  Google Scholar 

  7. Apfelbaum JL, Gan TJ, Zhao S, Hanna DB, Chen C. Reliability and validity of the perioperative opioid-related symptom distress scale. Anesth Analg. 2004;99:699–709.

    Article  PubMed  CAS  Google Scholar 

  8. Oderda GM, Said Q, Evans RS, Stoddard GJ, Lloyd J, Jackson K, Rublee D, Samore MH. Opioid-related adverse drug events in surgical hospitalizations: impact on costs and length of stay. Ann Pharmacother. 2007;41:400–6.

    Article  PubMed  Google Scholar 

  9. Bakan M, Umutoglu T, Topuz U, Uysal H, Bayram M, Kadioglu H, Salihoglu Z. Opioid-free total intravenous anesthesia with propofol, dexmedetomidine and lidocaine infusions for laparoscopic cholecystectomy: a prospective, randomized, double-blinded study. Braz J Anesthesiol. 2015;65:191–9.

    Article  PubMed  Google Scholar 

  10. Kim DJ, Bengali R, Anderson TA. Opioid-free anesthesia using continuous dexmedetomidine and lidocaine infusions in spine surgery. Korean J Anesthesiol. 2017;70:652–3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mure-Zamparini M, Fiant AL, Filipov T, Flais F, Fobe F, Hanouz JL. Intravenous lidocaine: an increasing but unauthorized prescription. Ann Fr Anesth Reanim. 2014;33:550–1.

    Article  PubMed  CAS  Google Scholar 

  12. Grassi P, Bregant GM, Crisman M. Systemic intravenous lidocaine for perioperative pain management: a call for changing indications in the package sheet. Heart Lung Vessel. 2014;6:137–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Sampson KJ, Kass RS. Anti-arrhythmic drugs. Lidocaine. In: Brunton L, Chabner B, Knollman B (eds) Goodman and Gilman. The pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 841–842.

  14. Usubiaga JE, Wikinski J, Ferrero R, Usubiaga LE, Wikinski R. Local anesthetic-induced convulsions in man—an electroencephalographic study. Anesth Analg. 1966;45:611–20.

    Article  PubMed  CAS  Google Scholar 

  15. Drayer DE, Lorenzo B, Werns S, Reidenberg MM. Plasma levels, protein binding, and elimination data of lidocaine and active metabolites in cardiac patients of various ages. Clin Pharmacol Ther. 1983;34:14–22.

    Article  PubMed  CAS  Google Scholar 

  16. DeToledo JC. Lidocaine and seizures. Ther Drug Monit. 2000;22:320–2.

    Article  PubMed  CAS  Google Scholar 

  17. Boyes RN, Scott DB, Jebson PJ, Godman MJ, Julian DG. Pharmacokinetics of lidocaine in man. Clin Pharmacol Ther. 1971;12:105–16.

    Article  PubMed  CAS  Google Scholar 

  18. Nation RL, Triggs EJ, Selig M. Lignocaine kinetics in cardiac patients and aged subjects. Br J Clin Pharmacol. 1977;4:439–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Oertel R, Arenz N, Zeitz SG, Pietsch J. Investigations into distribution of lidocaine in human autopsy material. Biomed Chromatogr. 2015;29:1290–6.

    Article  PubMed  CAS  Google Scholar 

  20. Katz J, Gershwin ME, Hood NL. The distribution of 14C-labelled lidocaine in the rat using whole-body autoradiography. Arch Int Pharmacodyn Ther. 1968;175:339–46.

    PubMed  CAS  Google Scholar 

  21. Hammarström L, Slanina P, Tjälve H, Ullberg S. Distribution of local anesthetics: accumulation in some endocrine polypeptide-hormone producing cell systems. Br J Pharmacol. 1974;52:367–74.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bargetzi MJ, Aoyama T, Gonzalez FJ, Meyer UA. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clin Pharmacol Ther. 1989;46:521–7.

    Article  PubMed  CAS  Google Scholar 

  23. Orlando R, Piccoli P, De Martin S, Padrini R, Palatini P. Effect of the CYP3A4 inhibitor erythromycin on the pharmacokinetics of lignocaine and its pharmacologically active metabolites in subjects with normal and impaired liver function. Br J Clin Pharmacol. 2003;55:86–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Oellerich M, Burdelski M, Ringe B, Lamesch P, Gubernatis G, Bunzendahl H, Pichlmayr R, Herrmann H. Lignocaine metabolite formation as a measure of pre-transplant liver function. Lancet. 1989;1(8639):640–2.

    Article  PubMed  CAS  Google Scholar 

  25. Thomson AH, Elliott HL, Kelman AW, Meredith PA, Whiting B. The pharmacokinetics and pharmacodynamics of lignocaine and MEGX in healthy subjects. J Pharmacokinet Biopharm. 1987;15:101–15.

    Article  PubMed  CAS  Google Scholar 

  26. Aoki M, Okudaira K, Haga M, Nishigaki R, Hayashi M. Contribution of rat pulmonary metabolism to the elimination of lidocaine, midazolam, and nifedipine. Drug Metab Dispos. 2010;38:1183–8.

    Article  PubMed  CAS  Google Scholar 

  27. Routledge PA, Barchowsky A, Bjornsson TD, Kitchell BB, Shand DG. Lidocaine plasma protein binding. Clin Pharmacol Ther. 1980;27:347–51.

    Article  PubMed  CAS  Google Scholar 

  28. Lönnqvist PA, Herngren L. Effects of pronounced haemodilution on the plasma protein binding of lidocaine. Perfusion. 1995;10:17–20.

    Article  PubMed  Google Scholar 

  29. Gianelly R, von der Groeben JO, Spivack AP, Harrison DC. Effect of lidocaine on ventricular arrhythmias in patients with coronary heart disease. N Engl J Med. 1967;277:1215–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hsu YW, Somma J, Newman MF, Mathew JP. Population pharmacokinetics of lidocaine administered during and after cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25:931–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, Hering W. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98(4):1050–5.

    Article  PubMed  CAS  Google Scholar 

  32. Herroeder S, Pecher S, Schönherr ME, Kaulitz G, Hahnenkamp K, Friess H, Böttiger BW, Bauer H, Dijkgraaf MG, Durieux ME, Hollmann MW. Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial. Ann Surg. 2007;246:192–200.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bryson GL, Charapov I, Krolczyk G, Taljaard M, Reid D. Intravenous lidocaine does not reduce length of hospital stay following abdominal hysterectomy. Can J Anaesth. 2010;57:759–66.

    Article  PubMed  Google Scholar 

  34. Oliveira CM, Sakata RK, Slullitel A, Salomão R, Lanchote VL, Issy AM. Effect of intraoperative intravenous lidocaine on pain and plasma interleukin-6 in patients undergoing hysterectomy. Rev Bras Anestesiol. 2015;65:92–8.

    Article  PubMed  Google Scholar 

  35. El-Tahan MR, Warda OM, Diab DG, Ramzy EA, Matter MK. A randomized study of the effects of perioperative i.v. lidocaine on hemodynamic and hormonal responses for cesarean section. J Anesth. 2009;23(2):215–21.

    Article  PubMed  Google Scholar 

  36. Cassuto J, Wallin G, Högström S, Faxén A, Rimbäck G. Inhibition of postoperative pain by continuous low-dose intravenous infusion of lidocaine. Anesth Analg. 1985;64:971–4.

    Article  PubMed  CAS  Google Scholar 

  37. Grigoras A, Lee P, Sattar F, Shorten G. Perioperative intravenous lidocaine decreases the incidence of persistent pain after breast surgery. Clin J Pain. 2012;28:567–72.

    Article  PubMed  Google Scholar 

  38. Kasten GW, Owens E. Evaluation of lidocaine as an adjunct to fentanyl anesthesia for coronary artery bypass graft surgery. Anesth Analg. 1986;65:511–5.

    Article  PubMed  CAS  Google Scholar 

  39. Insler SR, O’Connor M, Samonte AF, Bazaral MG. Lidocaine and the inhibition of postoperative pain in coronary artery bypass patients. J Cardiothorac Vasc Anesth. 1995;9:541–6.

    Article  PubMed  CAS  Google Scholar 

  40. Mitchell SJ, Pellett O, Gorman DF. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg. 1999;67:1117–24.

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Wu X, Li J, Xiao F, Liu X, Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg. 2002;95:1134–41.

    Article  PubMed  CAS  Google Scholar 

  42. Inoue R, Suganuma T, Echizen H, Ishizaki T, Kushida K, Tomono Y. Plasma concentrations of lidocaine and its principal metabolites during intermittent epidural anesthesia. Anesthesiology. 1985;63:304–10.

    Article  PubMed  CAS  Google Scholar 

  43. Shono A, Sakura S, Saito Y, Doi K, Nakatani T. Comparison of 1% and 2% lidocaine epidural anaesthesia combined with sevoflurane general anaesthesia utilizing a constant bispectral index. Br J Anaesth. 2003;91:825–9.

    Article  PubMed  CAS  Google Scholar 

  44. De Martin S, Orlando R, Bertoli M, Pegoraro P, Palatini P. Differential effect of chronic renal failure on the pharmacokinetics of lidocaine in patients receiving and not receiving hemodialysis. Clin Pharmacol Ther. 2006;80:597–606.

    Article  PubMed  CAS  Google Scholar 

  45. Abernethy DR, Greenblatt DJ. Impairment of lidocaine clearance in elderly male subjects. J Cardiovasc Pharmacol. 1983;5:1093–6.

    Article  PubMed  CAS  Google Scholar 

  46. Abernethy DR, Greenblatt DJ. Lidocaine disposition in obesity. Am J Cardiol. 1984;53:1183–6.

    Article  PubMed  CAS  Google Scholar 

  47. Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46:219–25.

    Article  PubMed  CAS  Google Scholar 

  48. Burrows FA, Lerman J, LeDez KM, Strong HA. Pharmacokinetics of lidocaine in children with congenital heart disease. Can J Anaesth. 1991;38:196–200.

    Article  PubMed  CAS  Google Scholar 

  49. Tucker GT. Pharmacokinetics of local anaesthetics. Br J Anaesth. 1986;58:717–31.

    Article  PubMed  CAS  Google Scholar 

  50. Finholt DA, Stirt JA, DiFazio CA, Moscicki JC. Lidocaine pharmacokinetics in children during general anesthesia. Anesth Analg. 1986;65:279–82.

    Article  PubMed  CAS  Google Scholar 

  51. Butterworth JF 4th, Strichartz GR. Molecular mechanisms of local anesthesia: a review. Anesthesiology. 1990;72:711–34.

    Article  PubMed  CAS  Google Scholar 

  52. Arias HR. Role of local anesthetics on both cholinergic and serotonergic ionotropic receptors. Neurosci Biobehav Rev. 1999;23:817–43.

    Article  PubMed  CAS  Google Scholar 

  53. van der Wal SE, van den Heuvel SA, Radema SA, van Berkum BF, Vaneker M, Steegers MA, Scheffer GJ, Vissers KC. The in vitro mechanisms and in vivo efficacy of intravenous lidocaine on the neuroinflammatory response in acute and chronic pain. Eur J Pain. 2016;20:655–74.

    Article  PubMed  CAS  Google Scholar 

  54. Devor M, Wall PD, Catalan N. Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain. 1992;48:261–8.

    Article  PubMed  CAS  Google Scholar 

  55. Jaffe RA, Rowe MA. Subanesthetic concentrations of lidocaine selectively inhibit a nociceptive response in the isolated rat spinal cord. Pain. 1995;60:167–74.

    Article  PubMed  CAS  Google Scholar 

  56. Koppert W, Zeck S, Sittl R, Likar R, Knoll R, Schmelz M. Low-dose lidocaine suppresses experimentally induced hyperalgesia in humans. Anesthesiology. 1998;89:1345–53.

    Article  PubMed  CAS  Google Scholar 

  57. Kawamata M, Takahashi T, Kozuka Y, Nawa Y, Nishikawa K, Narimatsu E, Watanabe H, Namiki A. Experimental incision-induced pain in human skin: effects of systemic lidocaine on flare formation and hyperalgesia. Pain. 2002;100:77–89.

    Article  PubMed  CAS  Google Scholar 

  58. Kawamata M, Watanabe H, Nishikawa K, Takahashi T, Kozuka Y, Kawamata T, Omote K, Namiki A. Different mechanisms of development and maintenance of experimental incision-induced hyperalgesia in human skin. Anesthesiology. 2002;97:550–9.

    Article  PubMed  CAS  Google Scholar 

  59. Cui W, Li Y, Li S, Yang W, Jiang J, Han S, Li J. Systemic lidocaine inhibits remifentanil-induced hyperalgesia via the inhibition of cPKCgamma membrane translocation in spinal dorsal horn of rats. J Neurosurg Anesthesiol. 2009;21:318–25.

    Article  PubMed  Google Scholar 

  60. Koppert W, Ostermeier N, Sittl R, Weidner C, Schmelz M. Low-dose lidocaine reduces secondary hyperalgesia by a central mode of action. Pain. 2000;85:217–24.

    Article  PubMed  CAS  Google Scholar 

  61. Kawamata M, Sugino S, Narimatsu E, Yamauchi M, Kiya T, Furuse S, Namiki A. Effects of systemic administration of lidocaine and QX-314 on hyperexcitability of spinal dorsal horn neurons after incision in the rat. Pain. 2006;122:68–80.

    Article  PubMed  CAS  Google Scholar 

  62. Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58:280–6.

    Article  PubMed  CAS  Google Scholar 

  63. Fassoulaki A, Melemeni A, Zotou M, Sarantopoulos C. Systemic ondansetron antagonizes the sensory block produced by intrathecal lidocaine. Anesth Analg. 2005;100:1817–21.

    Article  PubMed  CAS  Google Scholar 

  64. Hirota K, Okawa H, Appadu BL, Grandy DK, Lambert DG. Interaction of local anaesthetics with recombinant mu, kappa, and delta-opioid receptors expressed in Chinese hamster ovary cells. Br J Anaesth. 2000;85(5):740–6.

    Article  PubMed  CAS  Google Scholar 

  65. Cohen SP, Mao J. Is the analgesic effect of systemic lidocaine mediated through opioid receptors? Acta Anaesthesiol Scand. 2003;47:910–1.

    Article  PubMed  CAS  Google Scholar 

  66. Wagers PW, Smith CM. Responses in dental nerves of dogs to tooth stimulation and the effects of systemically administered procaine, lidocaine and morphine. J Pharmacol Exp Ther. 1960;130:89–105.

    PubMed  CAS  Google Scholar 

  67. De Jong RH, Nace RA. Nerve impulse conduction during intravenous lidocaine injection. Anesthesiology. 1968;29:22–8.

    Article  PubMed  Google Scholar 

  68. Woolf CJ, Wiesenfeld-Hallin Z. The systemic administration of local anaesthetics produces a selective depression of C-afferent fibre evoked activity in the spinal cord. Pain. 1985;23:361–74.

    Article  PubMed  CAS  Google Scholar 

  69. Abelson KS, Höglund AU. Intravenously administered lidocaine in therapeutic doses increases the intraspinal release of acetylcholine in rats. Neurosci Lett. 2002;317:93–6.

    Article  PubMed  CAS  Google Scholar 

  70. Nagy I, Woolf CJ. Lignocaine selectively reduces C fibre-evoked neuronal activity in rat spinal cord in vitro by decreasing N-methyl-d-aspartate and neurokinin receptor-mediated post-synaptic depolarizations; implications for the development of novel centrally acting analgesics. Pain. 1996;64:59–70.

    Article  PubMed  CAS  Google Scholar 

  71. Muth-Selbach U, Hermanns H, Stegmann JU, Kollosche K, Freynhagen R, Bauer I, Lipfert P. Antinociceptive effects of systemic lidocaine: involvement of the spinal glycinergic system. Eur J Pharmacol. 2009;613:68–73.

    Article  PubMed  CAS  Google Scholar 

  72. Sugimoto M, Uchida I, Mashimo T. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-d-aspartate (NMDA) receptors. Br J Pharmacol. 2003;138:876–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wagman IH, De Jong RH, Prince DA. Effects of lidocaine on the central nervous system. Anesthesiology. 1967;28:155–72.

    Article  PubMed  CAS  Google Scholar 

  74. Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93:858–75.

    Article  PubMed  CAS  Google Scholar 

  75. Caracas HC, Maciel JV, Martins PM, de Souza MM, Maia LC. The use of lidocaine as an anti-inflammatory substance: a systematic review. J Dent. 2009;37:93–7.

    Article  PubMed  CAS  Google Scholar 

  76. Peck SL, Johnston RB Jr, Horwitz LD. Reduced neutrophil superoxide anion release after prolonged infusions of lidocaine. J Pharmacol Exp Ther. 1985;235(2):418–22.

    PubMed  CAS  Google Scholar 

  77. Fischer LG, Bremer M, Coleman EJ, Conrad B, Krumm B, Gross A, Hollmann MW, Mandell G, Durieux ME. Local anesthetics attenuate lysophosphatidic acid-induced priming in human neutrophils. Anesth Analg. 2001;92:1041–7.

    Article  PubMed  CAS  Google Scholar 

  78. Sinclair R, Eriksson AS, Gretzer C, Cassuto J, Thomsen P. Inhibitory effects of amide local anaesthetics on stimulus-induced human leukocyte metabolic activation, LTB4 release and IL-1 secretion in vitro. Acta Anaesthesiol Scand. 1993;37:159–65.

    Article  PubMed  CAS  Google Scholar 

  79. MacGregor RR, Thorner RE, Wright DM. Lidocaine inhibits granulocyte adherence and prevents granulocyte delivery to inflammatory sites. Blood. 1980;56:203–9.

    PubMed  CAS  Google Scholar 

  80. Schmidt W, Schmidt H, Bauer H, Gebhard MM, Martin E. Influence of lidocaine on endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Anesthesiology. 1997;87:617–24.

    Article  PubMed  CAS  Google Scholar 

  81. Piegeler T, Votta-Velis EG, Bakhshi FR, Mao M, Carnegie G, Bonini MG, Schwartz DE, Borgeat A, Beck-Schimmer B, Minshall RD. Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation. Anesthesiology. 2014;120:1414–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Eriksson AS, Sinclair R, Cassuto J, Thomsen P. Influence of lidocaine on leukocyte function in the surgical wound. Anesthesiology. 1992;77:74–8.

    Article  PubMed  CAS  Google Scholar 

  83. Hollmann MW, Gross A, Jelacin N, Durieux ME. Local anesthetic effects on priming and activation of human neutrophils. Anesthesiology. 2001;95:113–22.

    Article  PubMed  CAS  Google Scholar 

  84. Hollmann MW, Herroeder S, Kurz KS, Hoenemann CW, Struemper D, Hahnenkamp K, Durieux ME. Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics. Anesthesiology. 2004;100:852–60.

    Article  PubMed  CAS  Google Scholar 

  85. de Klaver MJ, Weingart GS, Obrig TG, Rich GF. Local anesthetic-induced protection against lipopoly saccharide-induced injury in endothelial cells: The role of mitochondrial adenosine triphosphate-sensitive potassium channels. Anesth Analg. 2006;102:1108–13.

    Article  PubMed  CAS  Google Scholar 

  86. Rimbäck G, Cassuto J, Wallin G, Westlander G. Inhibition of peritonitis by amide local anesthetics. Anesthesiology. 1988;69:881–6.

    Article  PubMed  Google Scholar 

  87. Gallos G, Jones DR, Nasr SH, Emala CW, Lee HT. Local anesthetics reduce mortality and protect against renal and hepatic dysfunction in murine septic peritonitis. Anesthesiology. 2004;101:902–11.

    Article  PubMed  CAS  Google Scholar 

  88. Van Der Wal S, Vaneker M, Steegers M, Van Berkum B, Kox M, Van Der Laak J, Van Der Hoeven J, Vissers K, Scheffer GJ. Lidocaine increases the anti-inflammatory cytokine IL-10 following mechanical ventilation in healthy mice. Acta Anaesthesiol Scand. 2015;59:47–55.

    Article  CAS  Google Scholar 

  89. Kuo CP, Jao SW, Chen KM, Wong CS, Yeh CC, Sheen MJ, Wu CT. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97:640–6.

    Article  PubMed  CAS  Google Scholar 

  90. Yardeni IZ, Beilin B, Mayburd E, Levinson Y, Bessler H. The effect of perioperative intravenous lidocaine on postoperative pain and immune function. Anesth Analg. 2009;109:1464–9.

    Article  PubMed  CAS  Google Scholar 

  91. Yon JH, Choi GJ, Kang H, Park JM, Yang HS. Intraoperative systemic lidocaine for pre-emptive analgesics in subtotal gastrectomy: a prospective, randomized, double-blind, placebo-controlled study. Can J Surg. 2014;57:175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sridhar P, Sistla SC, Ali SM, Karthikeyan VS, Badhe AS, Ananthanarayanan PH. Effect of intravenous lignocaine on perioperative stress response and post-surgical ileus in elective open abdominal surgeries: a double-blind randomized controlled trial. ANZ J Surg. 2015;85:425–9.

    Article  PubMed  Google Scholar 

  93. Choi GJ, Kang H, Ahn EJ, Oh JI, Baek CW, Jung YH, Kim JY. Clinical efficacy of intravenous lidocaine for thyroidectomy: a prospective, randomized, double-Blind, placebo-controlled trial. World J Surg. 2016;40:2941–7.

    Article  PubMed  Google Scholar 

  94. Song X, Sun Y, Zhang X, Li T, Yang B. Effect of perioperative intravenous lidocaine infusion on postoperative recovery following laparoscopic cholecystectomy—a randomized controlled trial. Int J Surg. 2017;45:8–13.

    Article  PubMed  Google Scholar 

  95. Goodman NW, Stratford N. Effect of i.v. lignocaine on the breathing of patients anaesthetized with propofol. Br J Anaesth. 1995;75:573–7.

    Article  PubMed  CAS  Google Scholar 

  96. Downes H, Loehning RW. Local anesthetic contracture and relaxation of airway smooth muscle. Anesthesiology. 1977;47:430–6.

    Article  PubMed  CAS  Google Scholar 

  97. Hollmann MW, Fischer LG, Byford AM, Durieux ME. Local anesthetic inhibition of m1 muscarinic acetylcholine signaling. Anesthesiology. 2000;93:497–509.

    Article  PubMed  CAS  Google Scholar 

  98. Weiss EB, Hargraves WA, Viswanath SG. The inhibitory action of lidocaine in anaphylaxis. Am Rev Respir Dis. 1978;117:859–69.

    PubMed  CAS  Google Scholar 

  99. Groeben H, Silvanus MT, Beste M, Peters J. Combined intravenous lidocaine and inhaled salbutamol protect against bronchial hyperreactivity more effectively than lidocaine or salbutamol alone. Anesthesiology. 1998;89:862–8.

    Article  PubMed  CAS  Google Scholar 

  100. Nishino T, Hiraga K, Sugimori K. Effects of i.v. lignocaine on airway reflexes elicited by irritation of the tracheal mucosa in humans anaesthetized with enflurane. Br J Anaesth. 1990;64:682–7.

    Article  PubMed  CAS  Google Scholar 

  101. Erb TO, von Ungern-Sternberg BS, Keller K, Frei FJ. The effect of intravenous lidocaine on laryngeal and respiratory reflex responses in anaesthetised children. Anaesthesia. 2013;68:13–20.

    Article  PubMed  CAS  Google Scholar 

  102. Mihara T, Uchimoto K, Morita S, Goto T. The efficacy of lidocaine to prevent laryngospasm in children: a systematic review and meta-analysis. Anaesthesia. 2014;69:1388–96.

    Article  PubMed  CAS  Google Scholar 

  103. Qi X, Lai Z, Li S, Liu X, Wang Z, Tan W. The efficacy of lidocaine in laryngospasm prevention in pediatric surgery: a network meta-analysis. Sci Rep. 2016;6:32308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gecaj-Gashi A, Nikolova-Todorova Z, Ismaili-Jaha V, Gashi M. Intravenous lidocaine suppresses fentanyl-induced cough in children. Cough. 2013;9:20.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lieberman NA, Harris RS, Katz RI, Lipschutz HM, Dolgin M, Fisher VJ. The effects of lidocaine on the electrical and mechanical activity of the heart. Am J Cardiol. 1968;22:375–80.

    Article  PubMed  CAS  Google Scholar 

  106. Johns RA, DiFazio CA, Longnecker DE. Lidocaine constricts or dilates rat arterioles in a dose-dependent manner. Anesthesiology. 1985;62:141–4.

    Article  PubMed  CAS  Google Scholar 

  107. Abe S, Meguro T, Endoh N, Terashima M, Mitsuoka M, Akatsu M, Kikuchi Y, Takizawa K. Response of the radial artery to three vasodilatory agents. Catheter Cardiovasc Interv. 2000;49:253–6.

    Article  PubMed  CAS  Google Scholar 

  108. Arsyad A, Dobson GP. Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: possible role of Kv, KATP channels and A2a receptor crosstalk. BMC Anesthesiol. 2016;16:121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Rimbäck G, Cassuto J, Tollesson PO. Treatment of postoperative paralytic ileus by intravenous lidocaine infusion. Anesth Analg. 1990;70:414–9.

    Article  PubMed  Google Scholar 

  110. Harvey KP, Adair JD, Isho M, Robinson R. Can intravenous lidocaine decrease postsurgical ileus and shorten hospital stay in elective bowel surgery? A pilot study and literature review. Am J Surg. 2009;198:231–6.

    Article  PubMed  CAS  Google Scholar 

  111. Holte K, Kehlet H. Postoperative ileus: progress towards effective management. Drugs. 2002;62:2603–15.

    Article  PubMed  CAS  Google Scholar 

  112. Boeckxstaens GE, de Jonge WJ. Neuroimmune mechanisms in postoperative ileus. Gut. 2009;58:1300–11.

    PubMed  CAS  Google Scholar 

  113. Tappenbeck K, Hoppe S, Reichert C, Feige K, Huber K. In vitro effects of lidocaine on contractility of circular and longitudinal equine intestinal smooth muscle. Vet J. 2013;198:170–5.

    Article  PubMed  CAS  Google Scholar 

  114. Tappenbeck K, Hoppe S, Geburek F, Feige K, Huber K. Impact of tetrodotoxin application and lidocaine supplementation on equine jejunal smooth muscle contractility and activity of the enteric nervous system in vitro. Vet J. 2014;201:423–6.

    Article  PubMed  CAS  Google Scholar 

  115. Lang A, Ben Horin S, Picard O, Fudim E, Amariglio N, Chowers Y. Lidocaine inhibits epithelial chemokine secretion via inhibition of nuclear factor kappa B activation. Immunobiology. 2010;215:304–13.

    Article  PubMed  CAS  Google Scholar 

  116. Cook VL, Jones Shults J, McDowell M, Campbell NB, Davis JL, Blikslager AT. Attenuation of ischaemic injury in the equine jejunum by administration of systemic lidocaine. Equine Vet J. 2008;40:353–7.

    Article  PubMed  CAS  Google Scholar 

  117. Ness TJ. Intravenous lidocaine inhibits visceral nociceptive reflexes and spinal neurons in the rat. Anesthesiology. 2000;92:1685–91.

    Article  PubMed  CAS  Google Scholar 

  118. Munson ES, Embro WJ. Lidocaine, monoethylglycinexylidide, and isolated human uterine muscle. Anesthesiology. 1978;48:183–6.

    Article  PubMed  CAS  Google Scholar 

  119. Oh SJ, Paick SH, Lim DJ, Lee E, Lee SE. Effects of local anesthetics on human bladder contractility. Neurourol Urodyn. 2005;24:288–94.

    Article  PubMed  CAS  Google Scholar 

  120. Borg T, Modig J. Potential anti-thrombotic effects of local anaesthetics due to their inhibition of platelet aggregation. Acta Anaesthesiol Scand. 1985;29:739–42.

    Article  PubMed  CAS  Google Scholar 

  121. Gotta AW, Sullivan CA. Platelet aggregation and the pharmacology of local anaesthetics. Drugs Exp Clin Res. 1986;12:853–6.

    PubMed  CAS  Google Scholar 

  122. Berntsen RF, Simonsen T, Sager G, Olsen H. Therapeutic lidocaine concentrations have no effect on blood platelet function and plasma catecholamine levels. Eur J Clin Pharmacol. 1992;43:109–11.

    Article  PubMed  CAS  Google Scholar 

  123. Tobias MD, Henry C, Augostides YG. Lidocaine and bupivacaine exert differential effects on whole blood coagulation. J Clin Anesth. 1999;11:52–5.

    Article  PubMed  CAS  Google Scholar 

  124. Luostarinen V, Evers H, Lyytikäinen MT. Scheinin, Wahlén A. Antithrombotic effects of lidocaine and related compounds on laser-induced microvascular injury. Acta Anaesthesiol Scand. 1981;25:9–11.

    Article  PubMed  CAS  Google Scholar 

  125. Cooke ED, Bowcock SA, Lloyd MJ, Pilcher MF. Intravenous lignocaine in prevention of deep venous thrombosis after elective hip surgery. Lancet. 1977;2:797–9.

    Article  PubMed  CAS  Google Scholar 

  126. Rodgers A, Walker N, Schug S, McKee A, Kehlet H, van Zundert A, Sage D, Futter M, Saville G, Clark T, MacMahon S. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ. 2000;321:1–12.

    Article  Google Scholar 

  127. Johnson SM, Saint John BE, Dine AP. Local anesthetics as antimicrobial agents: a review. Surg Infect. 2008;9:205–13.

    Article  Google Scholar 

  128. Schmidt RM, Rosenkranz HS. Antimicrobial activity of local anesthetics: lidocaine and procaine. J Infect Dis. 1970;121:597–607.

    Article  PubMed  CAS  Google Scholar 

  129. Ravin CE, Latimer JM, Matsen JM. In vitro effects of lidocaine on anaerobic respiratory pathogens and strains of Hemophilus influenzae. Chest. 1977;72:439–41.

    Article  PubMed  CAS  Google Scholar 

  130. Sakuragi T, Yanagisawa K, Shirai Y, Dan K. Growth of Escherichia coli in propofol, lidocaine, and mixtures of propofol and lidocaine. Acta Anaesthesiol Scand. 1999;43:476–9.

    Article  PubMed  CAS  Google Scholar 

  131. De Amici D, Ramaioli F, Ceriana P, Percivalle E. Antiviral activity of local anaesthetic agents. J Antimicrob Chemother. 1996;37:635.

    Article  PubMed  Google Scholar 

  132. Chamaraux-Tran TN, Piegeler T. The Amide local anesthetic lidocaine in cancer surgery-potential antimetastatic effects and preservation of immune cell function? A narrative review. Front Med. 2017;20(4):235.

    Article  Google Scholar 

  133. Cata JP, Ramirez MF, Velasquez JF, Di AI, Popat KU, Gottumukkala V, Black DM, Lewis VO, Vauthey JN. Lidocaine stimulates the function of natural killer cells in different experimental settings. Anticancer Res. 2017;37:4727–32.

    PubMed  Google Scholar 

  134. Lirk P, Hollmann MW, Fleischer M, Weber NC, Fiegl H. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth. 2014;113(Suppl 1):i32–8.

    Article  PubMed  CAS  Google Scholar 

  135. Piegeler T, Votta-Velis EG, Liu G, Place AT, Schwartz DE, Beck-Schimmer B, Minshall RD, Borgeat A. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology. 2012;117:548–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Xing W, Chen DT, Pan JH, Chen YH, Yan Y, Li Q, Xue RF, Yuan YF, Zeng WA. Lidocaine induces apoptosis and suppresses tumor growth in human hepatocellular carcinoma cells in vitro and in a xenograft model in vivo. Anesthesiology. 2017;126:868–81.

    Article  PubMed  CAS  Google Scholar 

  137. Le Gac G, Angenard G, Clément B, Laviolle B, Coulouarn C, Beloeil H. Local anesthetics inhibit the growth of human hepatocellular carcinoma cells. Anesth Analg. 2017;125:1600–9.

    Article  PubMed  CAS  Google Scholar 

  138. Cassinello F, Prieto I, del Olmo M, Rivas S, Strichartz GR. Cancer surgery: how may anesthesia influence outcome? J Clin Anesth. 2015;27:262–72.

    Article  PubMed  Google Scholar 

  139. Chamaraux-Tran TN, Mathelin C, Aprahamian M, Joshi GP, Tomasetto C, Diemunsch P, Akladios C. Antitumor effects of lidocaine on human breast cancer cells: an in vitro and in vivo experimental trial. Anticancer Res. 2018;38:95–105.

    PubMed  Google Scholar 

  140. Macario A, Weinger M, Truong P, Lee M. Which clinical anesthesia outcomes are both common and important to avoid? The perspective of a panel of expert anesthesiologists. Anesth Analg. 1999;88:1085–91.

    Article  PubMed  CAS  Google Scholar 

  141. Euasobhon P, Dej-Arkom S, Siriussawakul A, Muangman S, Sriraj W, Pattanittum P, Lumbiganon P. Lidocaine for reducing propofol-induced pain on induction of anaesthesia in adults. Cochrane Database Syst Rev. 2016;2:CD007874.

  142. Lang BC, Yang CS, Zhang LL, Zhang WS, Fu YZ. Efficacy of lidocaine on preventing incidence and severity of pain associated with propofol using in pediatric patients: a PRISMA-compliant meta-analysis of randomized controlled trials. Medicine (Baltimore). 2017;96:e6320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Picard P, Tramèr MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90:963–9.

    Article  PubMed  CAS  Google Scholar 

  144. Jalota L, Kalira V, George E, Shi YY, Hornuss C, Radke O, Pace NL, Apfel CC, Perioperative clinical research core. Prevention of pain on injection of propofol: systematic review and meta-analysis. BMJ. 2011;342:d1110.

    Article  PubMed  CAS  Google Scholar 

  145. Xing J, Liang L, Zhou S, Luo C, Cai J, Hei Z. Intravenous lidocaine alleviates the pain of propofol injection by local anesthetic and central analgesic effects. Pain Med. 2018;19:598–607.

    Article  PubMed  Google Scholar 

  146. Kranke P, Jokinen J, Pace NL, Schnabel A, Hollmann MW, Hahnenkamp K, Eberhart LH, Poepping DM, Weibel S. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Database Syst Rev. 2015;16:CD009642.

  147. Weibel S, Jokinen J, Pace NL, Schnabel A, Hollmann MW, Hahnenkamp K, Eberhart LH, Poepping DM, Afshari A, Kranke P. Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: a systematic review with trial sequential analysis. Br J Anaesth. 2016;116:770–83.

    Article  PubMed  CAS  Google Scholar 

  148. Weibel S, Jelting Y, Pace NL, Helf A, Eberhart LH, Hahnenkamp K, Hollmann MW, Poepping DM, Schnabel A, Kranke P. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. 2018;6:CD009642.

  149. Marret E, Rolin M, Beaussier M, Bonnet F. Meta-analysis of intravenous lidocaine and postoperative recovery after abdominal surgery. Br J Surg. 2008;95:1331–8.

    Article  PubMed  CAS  Google Scholar 

  150. McCarthy GC, Megalla SA, Habib AS. Impact of intravenous lidocaine infusion on postoperative analgesia and recovery from surgery: a systematic review of randomized controlled trials. Drugs. 2010;70:1149–63.

    Article  PubMed  CAS  Google Scholar 

  151. Vigneault L, Turgeon AF, Côté D, Lauzier F, Zarychanski R, Moore L, McIntyre LA, Nicole PC, Fergusson DA. Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials. Can J Anaesth. 2011;58:22–37.

    Article  PubMed  Google Scholar 

  152. Sun Y, Li T, Wang N, Yun Y, Gan TJ. Perioperative systemic lidocaine for postoperative analgesia and recovery after abdominal surgery: a meta-analysis of randomized controlled trials. Dis Colon Rectum. 2012;55:1183–94.

    Article  PubMed  Google Scholar 

  153. Ventham NT, Kennedy ED, Brady RR, Paterson HM, Speake D, Foo I, Fearon KC. Efficacy of intravenous lidocaine for postoperative analgesia following laparoscopic surgery: a meta-analysis. World J Surg. 2015;39:2220–34.

    Article  PubMed  Google Scholar 

  154. Khan JS, Yousuf M, Victor JC, Sharma A, Siddiqui N. An estimation for an appropriate end time for an intraoperative intravenous lidocaine infusion in bowel surgery: a comparative meta-analysis. J Clin Anesth. 2016;28:95–104.

    Article  PubMed  CAS  Google Scholar 

  155. De Oliveira GS, Duncan K, Fitzgerald P, Nader A, Gould RW, McCarthy RJ. Systemic lidocaine to improve quality of recovery after laparoscopic bariatric surgery: a randomized double-blinded placebo-controlled trial. Obes Surg. 2014;24:212–8.

    Article  PubMed  Google Scholar 

  156. McKay A, Gottschalk A, Ploppa A, Durieux ME, Groves DS. Systemic lidocaine decreased the perioperative opioid analgesic requirements but failed to reduce discharge time after ambulatory surgery. Anesth Analg. 2009;109:1805–8.

    Article  PubMed  CAS  Google Scholar 

  157. De Oliveira GS, Fitzgerald P, Streicher LF, Marcus RJ, McCarthy RJ. Systemic lidocaine to improve postoperative quality of recovery after ambulatory laparoscopic surgery. Anesth Analg. 2012;115(2):262–7.

    Article  PubMed  CAS  Google Scholar 

  158. Li J, Wang G, Xu W, Ding M, Yu W. Efficacy of intravenous lidocaine on pain relief in patients undergoing laparoscopic cholecystectomy: a meta-analysis from randomized controlled trials. Int J Surg. 2018;50:137–45.

    Article  PubMed  CAS  Google Scholar 

  159. Zhao JB, Li YL, Wang YM, Teng JL, Xia DY, Zhao JS, Li FL. Intravenous lidocaine infusion for pain control after laparoscopic cholecystectomy: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018;97(5):e9771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Ram D, Sistla SC, Karthikeyan VS, Ali SM, Badhe AS, Mahalakshmy T. Comparison of intravenous and intraperitoneal lignocaine for pain relief following laparoscopic cholecystectomy: a double-blind, randomized, clinical trial. Surg Endosc. 2014;28:1291–7.

    Article  PubMed  Google Scholar 

  161. Groudine SB, Fisher HA, Kaufman RP Jr, Patel MK, Wilkins LJ, Mehta SA, Lumb PD. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg. 1998;86:235–9.

    PubMed  CAS  Google Scholar 

  162. Lauwick S, Kim DJ, Mistraletti G, Carli F. Functional walking capacity as an outcome measure of laparoscopic prostatectomy: the effect of lidocaine infusion. Br J Anaesth. 2009;103:213–9.

    Article  PubMed  CAS  Google Scholar 

  163. Weinberg L, Rachbuch C, Ting S, Howard W, Yeomans M, Gordon I, McNicol L, James K, Story D, Christophi C. A randomised controlled trial of peri-operative lidocaine infusions for open radical prostatectomy. Anaesthesia. 2016;71(4):405–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Weinberg L, Jang J, Rachbuch C, Tan C, Hu R, McNicol L. The effects of intravenous lignocaine on depth of anaesthesia and intraoperative haemodynamics during open radical prostatectomy. BMC Res Notes. 2017;10:248.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wuethrich PY, Romero J, Burkhard FC, Curatolo M. No benefit from perioperative intravenous lidocaine in laparoscopic renal surgery: a randomised, placebo-controlled study. Eur J Anaesthesiol. 2012;29(11):537–43.

    Article  PubMed  CAS  Google Scholar 

  166. Jendoubi A, Naceur IB, Bouzouita A, Trifa M, Ghedira S, Chebil M, Houissa M. A comparison between intravenous lidocaine and ketamine on acute and chronic pain after open nephrectomy: a prospective, double-blind, randomized, placebo-controlled study. Saudi J Anaesth. 2017;11:177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Grady MV, Mascha E, Sessler DI, Kurz A. The effect of perioperative intravenous lidocaine and ketamine on recovery after abdominal hysterectomy. Anesth Analg. 2012;115:1078–84.

    Article  PubMed  CAS  Google Scholar 

  168. Samimi S, Taheri A, Davari Tanha F. Comparison between intraperitoneal and intravenous lidocaine for postoperative analgesia after elective abdominal hysterectomy, a double-blind placebo controlled study. J Family Reprod Health. 2015;9:193–8.

    PubMed  PubMed Central  Google Scholar 

  169. Xu SQ, Li YH, Wang SB, Hu SH, Ju X, Xiao JB. Effects of intravenous lidocaine, dexmedetomidine and their combination on postoperative pain and bowel function recovery after abdominal hysterectomy. Minerva Anestesiol. 2017;83:685–94.

    PubMed  Google Scholar 

  170. Chang YC, Liu CL, Liu TP, Yang PS, Chen MJ, Cheng SP. Effect of perioperative intravenous lidocaine infusion on acute and chronic pain after breast surgery: a meta-analysis of randomized controlled trials. Pain Pract. 2017;17:336–43.

    Article  PubMed  Google Scholar 

  171. Kendall MC, McCarthy RJ, Panaro S, Goodwin E, Bialek JM, Nader A, De Oliveira GS Jr. The effect of intraoperative systemic lidocaine on postoperative persistent pain using initiative on methods, measurement, and pain assessment in clinical trials criteria assessment following breast cancer surgery: a randomized, double-blind, placebo-controlled trial. Pain Pract. 2018;18:350–9.

    Article  PubMed  Google Scholar 

  172. Kim KT, Cho DC, Sung JK, Kim YB, Kang H, Song KS, Choi GJ. Intraoperative systemic infusion of lidocaine reduces postoperative pain after lumbar surgery: a double-blinded, randomized, placebo-controlled clinical trial. Spine J. 2014;14:1559–66.

    Article  PubMed  Google Scholar 

  173. Farag E, Ghobrial M, Sessler DI, Dalton JE, Liu J, Lee JH, Zaky S, Benzel E, Bingaman W, Kurz A. Effect of perioperative intravenous lidocaine administration on pain, opioid consumption, and quality of life after complex spine surgery. Anesthesiology. 2013;119:932–40.

    Article  PubMed  CAS  Google Scholar 

  174. Dewinter G, Moens P, Fieuws S, Vanaudenaerde B, Van de Velde M, Rex S. Systemic lidocaine fails to improve postoperative morphine consumption, postoperative recovery and quality of life in patients undergoing posterior spinal arthrodesis. A double-blind, randomized, placebo-controlled trial. Br J Anaesth. 2017;118:576–85.

  175. Martin F, Cherif K, Gentili ME, Enel D, Abe E, Alvarez JC, Mazoit JX, Chauvin M, Bouhassira D, Fletcher D. Lack of impact of intravenous lidocaine on analgesia, functional recovery, and nociceptive pain threshold after total hip arthroplasty. Anesthesiology. 2008;109:118–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Choi KW, Nam KH, Lee JR, Chung WY, Kang SW, Joe YE, Lee JH. The effects of intravenous lidocaine infusions on the quality of recovery and chronic pain after robotic thyroidectomy: a randomized, double-blinded, controlled study. World J Surg. 2017;41:1305–12.

    Article  PubMed  Google Scholar 

  177. Striebel HW, Klettke U. Is intravenous lidocaine infusion suitable for postoperative pain management? Schmerz. 1992;6:245–50.

    Article  PubMed  CAS  Google Scholar 

  178. Echevarría GC, Altermatt FR, Paredes S, Puga V, Auad H, Veloso AM, Elgueta MF. Intra-operative lidocaine in the prevention of vomiting after elective tonsillectomy in children: a randomised controlled trial. Eur J Anaesthesiol. 2018;35:343–8.

    PubMed  Google Scholar 

  179. Mathew JP, Mackensen GB, Phillips-Bute B, Grocott HP, Glower DD, Laskowitz DT, Blumenthal JA, Newman MF, Neurologic Outcome Research Group (NORG) of the Duke Heart Center. Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke. 2009;40:880–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Cui W, Li Y, Li S, Wang R, Li J. Systemic administration of lidocaine reduces morphine requirements and postoperative pain of patients undergoing thoracic surgery after propofol-remifentanil-based anaesthesia. Eur J Anaesthesiol. 2010;27:41–6.

    Article  PubMed  CAS  Google Scholar 

  181. Peng Y, Zhang W, Kass IS, Han R. Lidocaine reduces acute postoperative pain after supratentorial tumor surgery in the PACU: a secondary finding from a randomized, controlled trial. J Neurosurg Anesthesiol. 2016;28:309–15.

    Article  PubMed  Google Scholar 

  182. Peng Y, Zhang W, Zhou X, Ji Y, Kass IS, Han R. Lidocaine did not reduce neuropsychological-cognitive decline in patients 6 months after supratentorial tumor surgery: a randomized, controlled trial. J Neurosurg Anesthesiol. 2016;28:6–13.

    Article  PubMed  Google Scholar 

  183. Samaha T, Ravussin P, Claquin C, Ecoffey C. Prevention of increase of blood pressure and intracranial pressure during endotracheal intubation in neurosurgery: esmolol versus lidocaine. Ann Fr Anesth Reanim. 1996;15:36–40.

    Article  PubMed  CAS  Google Scholar 

  184. Beaussier M, Parc Y, Guechot J, Cachanado M, Rousseau A, Lescot T, CATCH study investigators. Ropivacaine preperitoneal wound infusion for pain relief and prevention of incisional hyperalgesia after laparoscopic colorectal surgery. Colorectal Dis. 2018;20:509–19.

    Article  PubMed  CAS  Google Scholar 

  185. Hamill JF, Bedford RF, Weaver DC, Colohan AR. Lidocaine before endotracheal intubation: intravenous or laryngotracheal? Anesthesiology. 1981;55:578–81.

    Article  PubMed  CAS  Google Scholar 

  186. Pandey CK, Raza M, Ranjan R, Singhal V, Kumar M, Lakra A, Navkar DV, Agarwal A, Singh RB, Singh U, Singh PK. Intravenous lidocaine 0.5 mg kg−1 effectively suppresses fentanyl-induced cough. Can J Anaesth. 2005;52:172–5.

    Article  PubMed  Google Scholar 

  187. Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, Joris JL. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106:11–8.

    Article  PubMed  CAS  Google Scholar 

  188. Senturk M, Pembeci K, Menda F, Ozkan T, Gucyetmez B, Tugrul M, Camci E, Akpir K. Effects of intramuscular administration of lidocaine or bupivacaine on induction and maintenance doses of propofol evaluated by bispectral index. Br J Anaesth. 2002;89(6):849–52.

    Article  PubMed  CAS  Google Scholar 

  189. Lauwick S, Kim DJ, Michelagnoli G, Mistraletti G, Feldman L, Fried G, Carli F. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55:754–60.

    Article  PubMed  Google Scholar 

  190. Gaughen CM, Durieux M. The effect of too much intravenous lidocaine on bispectral index. Anesth Analg. 2006;103:1464–5.

    Article  PubMed  CAS  Google Scholar 

  191. Neal JM, Barrington MJ, Fettiplace MR, Gitman M, Memtsoudis SG, Mörwald EE, Rubin DS, Weinberg G. The third american society of regional anesthesia and pain medicine practice advisory on local anesthetic systemic toxicity: executive summary 2017. Reg Anesth Pain Med. 2018;43:113–23.

    Article  PubMed  Google Scholar 

  192. Swenson BR, Gottschalk A, Wells LT, Rowlingson JC, Thompson PW, Barclay M, Sawyer RG, Friel CM, Foley E, Durieux ME. Intravenous lidocaine is as effective as epidural bupivacaine in reducing ileus duration, hospital stay, and pain after open colon resection: a randomized clinical trial. Reg Anesth Pain Med. 2010;35:370–6.

    Article  PubMed  CAS  Google Scholar 

  193. Ganta R, Fee JP. Pain on injection of propofol: comparison of lignocaine with metoclopramide. Br J Anaesth. 1992;69:316–7.

    Article  PubMed  CAS  Google Scholar 

  194. Masaki Y, Tanaka M, Nishikawa T. Physicochemical compatibility of propofol-lidocaine mixture. Anesth Analg. 2003;97:1646–51.

    Article  PubMed  CAS  Google Scholar 

  195. Ring J, Franz R, Brockow K. Anaphylactic reactions to local anesthetics. Chem Immunol Allergy. 2010;95:190–200.

    Article  PubMed  CAS  Google Scholar 

  196. Mertes PM, Laxenaire MC, GERAP. Anaphylactic and anaphylactoid reactions occurring during anaesthesia in France. Seventh epidemiologic survey (January 2001–December 2002). Ann Fr Anesth Reanim. 2004;23:1133–43.

    Article  PubMed  Google Scholar 

  197. Fuzier R, Lapeyre-Mestre M, Mertes PM, Nicolas JF, Benoit Y, Didier A, Albert N, Montastruc JL, French Association of Regional Pharmacovigilance Centers. Immediate- and delayed-type allergic reactions to amide local anesthetics: clinical features and skin testing. Pharmacoepidemiol Drug Saf. 2009;18:595–601.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Beaussier.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relevant to this article. MB: Consulting fees from Baxter, MSD, Aguettant and Fresenius. AD: Consulting fees from Aguettant. Payment for lecture by BBraun and Gamida. Participation to clinical research with Sandoz and Bayer. AMZ: Consulting fees from Aguettant. CE: consulting fees from Aguettant. LM: Consulting fees from BBraun and Aguettant.

Funding

No funding was received for this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaussier, M., Delbos, A., Maurice-Szamburski, A. et al. Perioperative Use of Intravenous Lidocaine. Drugs 78, 1229–1246 (2018). https://doi.org/10.1007/s40265-018-0955-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0955-x

Navigation