Skip to main content

Advertisement

Log in

Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Src family kinases (SFKs) are signaling enzymes that have long been recognized to regulate critical cellular processes such as proliferation, survival, migration, and metastasis. Recently, considerable work has elucidated mechanisms by which SFKs regulate normal and pathologic processes in vascular biology, including endothelial cell proliferation and permeability. Further, when inappropriately activated, SFKs promote pathologic inflammatory processes and tumor metastasis, in part through their effects on the regulation of endothelial monolayer permeability. In this review, we discuss the roles of aberrantly activated SFKs in mediating endothelial permeability in the context of inflammatory states and tumor cell metastasis. We further summarize recent efforts to translate Src-specific inhibitors into therapy for systemic inflammatory conditions and numerous solid organ cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aberle H, Schwartz H, Kemler R (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61:514–523

    Article  PubMed  CAS  Google Scholar 

  • Alland L, Peseckis SM, Atherton RE, Berthiaume L, Resh MD (1994) Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization. J Biol Chem 269:16701–16705

    PubMed  CAS  Google Scholar 

  • Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50:197–263

    PubMed  CAS  Google Scholar 

  • Baruzzi A, Caveggion E, Berton G (2008) Regulation of phagocyte migration and recruitment by Src-family kinases. Cell Mol Life Sci 65:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2001) Pores in the sieve and channels in the wall: control of paracellular permeability by junctional proteins in endothelial cells. Microcirculation 8:143–152

    Article  PubMed  CAS  Google Scholar 

  • Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59:728–733

    PubMed  CAS  Google Scholar 

  • Birukov KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, Garcia JG (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(Src). J Biol Chem 276:8567–8573

    Article  PubMed  CAS  Google Scholar 

  • Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  • Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26 (Suppl 1):S64–S74

    Article  PubMed  Google Scholar 

  • Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15:954–963

    PubMed  CAS  Google Scholar 

  • Calalb MB, Zhang X, Polte TR, Hanks SK (1996) Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 228:662–668

    Article  PubMed  CAS  Google Scholar 

  • Cartwright CA, Eckhart W, Simon S, Kaplan PL (1987) Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain. Cell 49:83–91

    Article  PubMed  CAS  Google Scholar 

  • Chou MT, Wang J, Fujita DJ (2002) Src kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells. BMC Biochem 3:32

    Article  PubMed  Google Scholar 

  • Cohen GB, Ren R, Baltimore D (1995) Modular binding domains in signal transduction proteins. Cell 80:237–248

    Article  PubMed  CAS  Google Scholar 

  • Criscuoli ML, Nguyen M, Eliceiri BP (2005) Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105:1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252:13–19

    Article  PubMed  CAS  Google Scholar 

  • Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, et al (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106:511–521

    Article  PubMed  CAS  Google Scholar 

  • Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, Hicklin DJ, Tateno M, Bohlen P, Moore MA, et al (2001) Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 98:10857–10862

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Eide BL, Turck CW, Escobedo JA (1995) Identification of Tyr-397 as the primary site of tyrosine phosphorylation and pp60src association in the focal adhesion kinase, pp125FAK. Mol Cell Biol 15:2819–2827

    PubMed  CAS  Google Scholar 

  • Ellis LM, Staley CA, Liu W, Fleming RY, Parikh NU, Bucana CD, Gallick GE (1998) Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J Biol Chem 273:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602:114–130

    PubMed  CAS  Google Scholar 

  • Frame MC, Fincham VJ, Carragher NO, Wyke JA (2002) v-Src’s hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3:233–245

    Article  PubMed  CAS  Google Scholar 

  • Garcia JG, Davis HW, Patterson CE (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163:510–522

    Article  PubMed  CAS  Google Scholar 

  • Garcia JG, Verin AD, Schaphorst K, Siddiqui R, Patterson CE, Csortos C, Natarajan V (1999) Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60(src). Am J Physiol 276:L989–L998

    PubMed  CAS  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  PubMed  CAS  Google Scholar 

  • Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE (2005) HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24:3110–3120

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner BM (1995) Signal transduction of beta-catenin. Curr Opin Cell Biol 7:634–640

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Wu MH, Granger HJ, Yuan SY (2005) Focal adhesion kinase in neutrophil-induced microvascular hyperpermeability. Microcirculation 12:223–232

    Article  PubMed  CAS  Google Scholar 

  • Ha CH, Bennett AM, Jin ZG (2008) A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem 283:7261–7270

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189

    Article  PubMed  CAS  Google Scholar 

  • Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Wernstedt C, Engstrom U, Claesson-Welsh L (1998) Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 273:23410–23418

    Article  PubMed  CAS  Google Scholar 

  • Johnson FM, Gallick GE (2007) SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anti-cancer Agents Med Chem 7:651–659

    Article  CAS  Google Scholar 

  • Kaplan KB, Bibbins KB, Swedlow JR, Arnaud M, Morgan DO, Varmus HE (1994) Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J 13:4745–4756

    PubMed  CAS  Google Scholar 

  • Khadaroo RG, He R, Parodo J, Powers KA, Marshall JC, Kapus A, Rotstein OD (2004) The role of the Src family of tyrosine kinases after oxidant-induced lung injury in vivo. Surgery 136:483–488

    Article  PubMed  Google Scholar 

  • Kmiecik TE, Shalloway D (1987) Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49:65–73

    Article  PubMed  CAS  Google Scholar 

  • Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992a) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  • Koch CA, Moran MF, Anderson D, Liu XQ, Mbamalu G, Pawson T (1992b) Multiple SH2-mediated interactions in v-src-transformed cells. Mol Cell Biol 12:1366–1374

    PubMed  CAS  Google Scholar 

  • Kopetz S, Shah AN, Gallick GE (2007) Src continues aging: current and future clinical directions. Clin Cancer Res 13:7232–7236

    Article  PubMed  CAS  Google Scholar 

  • Lambeng N, Wallez Y, Rampon C, Cand F, Christe G, Gulino-Debrac D, Vilgrain I, Huber P (2005) Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res 96:384–391

    Article  PubMed  CAS  Google Scholar 

  • Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321

    Article  PubMed  CAS  Google Scholar 

  • Lehr HA, Bittinger F, Kirkpatrick CJ (2000) Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol 190:373–386

    Article  PubMed  CAS  Google Scholar 

  • Lennmyr F, Ericsson A, Gerwins P, Akterin S, Ahlstrom H, Terent A (2004) Src family kinase-inhibitor PP2 reduces focal ischemic brain injury. Acta Neurol Scand 110:175–179

    Article  PubMed  CAS  Google Scholar 

  • Levinson NM, Seeliger MA, Cole PA, Kuriyan J (2008) Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134:124–134

    Article  PubMed  CAS  Google Scholar 

  • Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

    Article  PubMed  CAS  Google Scholar 

  • Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K, Scherer PE, Lisanti MP (1998) Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett 434:127–134

    Article  PubMed  CAS  Google Scholar 

  • Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465

    Article  PubMed  CAS  Google Scholar 

  • Lowell CA, Berton G (1998) Resistance to endotoxic shock and reduced neutrophil migration in mice deficient for the Src-family kinases Hck and Fgr. Proc Natl Acad Sci USA 95:7580–7584

    Article  PubMed  CAS  Google Scholar 

  • Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–L241

    PubMed  CAS  Google Scholar 

  • Luscinskas FW, Lawler J (1994) Integrins as dynamic regulators of vascular function. FASEB J 8:929–938

    PubMed  CAS  Google Scholar 

  • Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS (2001) Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98:1904–1913

    Article  PubMed  CAS  Google Scholar 

  • Mayer BJ, Hamaguchi M, Hanafusa H (1988) A novel viral oncogene with structural similarity to phospholipase C. Nature 332:272–275

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  PubMed  CAS  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  PubMed  CAS  Google Scholar 

  • Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, Malik AB (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1070

    Article  PubMed  CAS  Google Scholar 

  • Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT (1997) Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385:650–653

    Article  PubMed  CAS  Google Scholar 

  • Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87:8622–8626

    Article  PubMed  CAS  Google Scholar 

  • Mucha DR, Myers CL, Schaeffer RC Jr (2003) Endothelial contraction and monolayer hyperpermeability are regulated by Src kinase. Am J Physiol 284:H994–H1002

    CAS  Google Scholar 

  • Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375:577–581

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11:704–712

    Article  PubMed  CAS  Google Scholar 

  • Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  PubMed  CAS  Google Scholar 

  • Park SI, Shah AN, Zhang J, Gallick GE (2007) Regulation of angiogenesis and vascular permeability by Src family kinases: opportunities for therapeutic treatment of solid tumors. Expert Opin Ther Targets 11:1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M, Cheresh DA (2001) Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7:222–227

    Article  PubMed  CAS  Google Scholar 

  • Pawson T (1995) Protein modules and signalling networks. Nature 373:573–580

    Article  PubMed  CAS  Google Scholar 

  • Piwnica-Worms H, Saunders KB, Roberts TM, Smith AE, Cheng SH (1987) Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-src. Cell 49:75–82

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  • Reinhart K, Karzai W (2001) Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 29:S121–125

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (1993) Interaction of tyrosine kinase oncoproteins with cellular membranes. Biochim Biophys Acta 1155:307–322

    PubMed  CAS  Google Scholar 

  • Rippe B, Rosengren BI, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390

    Article  PubMed  CAS  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M (1999) Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J Biol Chem 274:36734–36740

    Article  PubMed  CAS  Google Scholar 

  • Rous FP (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411

    Article  Google Scholar 

  • Schlaepfer DD, Hunter T (1996) Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 16:5623–5633

    PubMed  CAS  Google Scholar 

  • Schlaepfer DD, Hanks SK, Hunter T, Geer P van der (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372:786–791

    PubMed  CAS  Google Scholar 

  • Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP (2001) Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276:48619–48622

    Article  PubMed  CAS  Google Scholar 

  • Severgnini M, Takahashi S, Tu P, Perides G, Homer RJ, Jhung JW, Bhavsar D, Cochran BH, Simon AR (2005) Inhibition of the Src and Jak kinases protects against lipopolysaccharide-induced acute lung injury. Am J Respir Crit Care Med 171:858–867

    Article  PubMed  Google Scholar 

  • Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD (2004a) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Tiruppathi C, Smrcka AV, Malik AB, Minshall RD (2004b) Gbetagamma activation of Src induces caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:48055–48062

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K (1999) Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 5:3711–3721

    PubMed  CAS  Google Scholar 

  • Shi S, Garcia JG, Roy S, Parinandi NL, Natarajan V (2000) Involvement of c-Src in diperoxovanadate-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 279:L441–L451

    PubMed  CAS  Google Scholar 

  • Sibbald WJ, Doig G, Inman KJ (1995) Sepsis, SIRS and infection. Int Care Med 21:299–301

    Article  CAS  Google Scholar 

  • Sicheri F, Moarefi I, Kuriyan J (1997) Crystal structure of the Src family tyrosine kinase Hck. Nature 385:602–609

    Article  PubMed  CAS  Google Scholar 

  • Stahl ML, Ferenz CR, Kelleher KL, Kriz RW, Knopf JL (1988) Sequence similarity of phospholipase C with the non-catalytic region of src. Nature 332:269–272

    Article  PubMed  CAS  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  PubMed  CAS  Google Scholar 

  • Strieter RM, Polverini PJ, Arenberg DA, Walz A, Opdenakker G, Van Damme J, Kunkel SL (1995) Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol 57:752–762

    PubMed  CAS  Google Scholar 

  • Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22:337–358

    Article  PubMed  CAS  Google Scholar 

  • Summy JM, Gallick GE (2006) Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 12:1398–1401

    Article  PubMed  CAS  Google Scholar 

  • Summy JM, Trevino JG, Baker CH, Gallick GE (2005) c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas 31:263–274

    Article  PubMed  CAS  Google Scholar 

  • Sverdlov M, Shajahan AN, Minshall RD (2007) Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis. J Cell Mol Med 11:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12:796–809

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  PubMed  CAS  Google Scholar 

  • Trevino JG, Summy JM, Gallick GE (2006a) SRC inhibitors as potential therapeutic agents for human cancers. Mini Rev Med Chem 6:681–687

    Article  PubMed  CAS  Google Scholar 

  • Trevino JG, Summy JM, Lesslie DP, Parikh NU, Hong DS, Lee FY, Donato NJ, Abbruzzese JL, Baker CH, Gallick GE (2006b) Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol 168:962–972

    Article  PubMed  CAS  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  • Weis S, Cui J, Barnes L, Cheresh D (2004a) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229

    Article  PubMed  CAS  Google Scholar 

  • Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, et al (2004b) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113:885–894

    PubMed  CAS  Google Scholar 

  • Westhoff MA, Serrels B, Fincham VJ, Frame MC, Carragher NO (2004) SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 24:8113–8133

    Article  PubMed  CAS  Google Scholar 

  • Wiener JR, Nakano K, Kruzelock RP, Bucana CD, Bast RC Jr, Gallick GE (1999) Decreased Src tyrosine kinase activity inhibits malignant human ovarian cancer tumor growth in a nude mouse model. Clin Cancer Res 5:2164–2170

    PubMed  CAS  Google Scholar 

  • Wong RK, Baldwin AL, Heimark RL (1999) Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 276:H736–H748

    PubMed  CAS  Google Scholar 

  • Xu W, Harrison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Doshi A, Lei M, Eck MJ, Harrison SC (1999) Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 3:629–638

    Article  PubMed  CAS  Google Scholar 

  • Yeatman TJ (2004) A renaissance for SRC. Nat Rev 4:470–480

    CAS  Google Scholar 

  • Yuan Y, Huang Q, Wu HM (1997) Myosin light chain phosphorylation: modulation of basal and agonist-stimulated venular permeability. Am J Physiol 272:H1437–H1443

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Gallick.

Additional information

The authors’ own research was supported in part by NIH U54 CA 090810 and P20 CA101936 (G.E.G) and NIH T32 CA 09599 (M.P.K.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.P., Park, S.I., Kopetz, S. et al. Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Cell Tissue Res 335, 249–259 (2009). https://doi.org/10.1007/s00441-008-0682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0682-9

Keywords

Navigation