Machine learning approach | F1 | Accuracy | Precision | Recall | AUC | |||||
No SMOTE | SMOTE | No SMOTE | SMOTE | No SMOTE | SMOTE | No SMOTE | SMOTE | No SMOTE | SMOTE | |
Logistic regression | 0.473 | 0.542 | 0.806 | 0.749 | 0.643 | 0.473 | 0.379 | 0.644 | 0.794 | 0.766 |
Balanced random forest classifier | 0.747 | 0.847 | 0.863 | 0.933 | 0.656 | 0.891 | 0.874 | 0.813 | 0.936 | 0.959 |
Balanced bagging classifier | 0.803 | 0.841 | 0.901 | 0.931 | 0.752 | 0.887 | 0.869 | 0.806 | 0.942 | 0.959 |
Random forest classifier | 0.797 | 0.847 | 0.919 | 0.932 | 0.934 | 0.884 | 0.701 | 0.818 | 0.957 | 0.959 |
Multilayer perceptron classifier | 0.399 | 0.505 | 0.802 | 0.712 | 0.690 | 0.440 | 0.301 | 0.638 | 0.777 | 0.759 |
Support vector classifier | 0.475 | 0.449 | 0.724 | 0.653 | 0.436 | 0.603 | 0.531 | 0.603 | 0.727 | 0.707 |
Values in green font signify improvement in given metric when SMOTE is used. Values in red font signify decrease in performance of given metric when SMOTE is used.
AUC, area under the curve; SMOTE, Synthetic Minority Oversampling Technique.