Supplementary Table 9 Multiple Comparison Adjustment with the Benjamini-Hochberg Procedure

The main hypothesis tests in this study are those in the Cox proportional models of the rates of subsequent interventions and long-term complications, and those in the logistic regression of life-threatening events. These hazard ratios and odds ratios are adjusted using patient demographics and clinical characteristics. We determined that the Benjamini-Hochberg procedure was the most appropriate method to control for the false discovery rate (FDR). Following the Bejamini-Hochberg procedure, the individual p-values of the main hypothesis tests were listed in an ascending order and assigned ranks from 1 (smallest p-value) to 10 largest p-value) (See Table).

The Benjamini-Hochberg critical value is calculated using the formula:

Critical value = (i/ m)·Q

i = the individual p-value's rank; m = total number of tests (10 tests); Q = the FDR which we set to be 5% (0.05)

The original p-values are then compared to the Benjamini-Hochberg critical value to determine statistical significance.

			Benjamini- Hochberg critical
Study Outcomes	p-value	rank	value
Rate of any subsequent spine intervention	<0.001	1	0.005
Rate of any LSS intervention	<0.001	2	0.010
Rate of a subsequent MILD	<0.001	3	0.015
Rate of other spine interventions	0.013	4	0.020
Rate of open decompression	0.015	5	0.025
Rate of spinal cord stimulation	0.053	6	0.030
Rate of a subsequent ISD	0.241	7	0.035
Risk of a short term complication	0.433	8	0.040
Rate of fusion	0.617	9	0.045
Risk of a long term complication	0.747	10	0.050

The largest p-value that is smaller than the Benjamini-Hochberg critical value is significant, and all the p values smaller than the largest value are also significant. In this analysis, the p-values of the outcomes that are bold are significant. The findings of this study remain consistent after this adjustment to control for the FDR.

References

Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018 Oct;71(5):353-360.

T Beyer, W. H. CRC Standard Mathematical Tables, 31st ed. Boca Raton, FL: CRC Press, pp. 536 and 571, 2002.

Vogt, W.P. (2005). Dictionary of Statistics & Methodology: A Nontechnical Guide for the Social Sciences. SAGE