RT Journal Article SR Electronic T1 Neurotoxicity of Adjuvants Used in Perineural Anesthesia and Analgesia in Comparison With Ropivacaine JF Regional Anesthesia & Pain Medicine JO Reg Anesth Pain Med FD BMJ Publishing Group Ltd SP 225-230 OP 225-230 DO 10.1097/AAP.0b013e3182176f70 VO 36 IS 3 A1 Brian A. Williams A1 Karen A. Hough A1 Becky Y. K. Tsui A1 James W. Ibinson A1 Michael S. Gold A1 G. F. Gebhart YR 2011 UL http://rapm.bmj.com/content/36/3/225-230.abstract AB Background and Objectives: Clonidine, buprenorphine, dexamethasone, and midazolam (C, B, D, M) have been used to prolong perineural local anesthesia in the absence of data on the influence of these adjuvants on local anesthetic-induced neurotoxicity. Therefore, the impact of these adjuvants on ropivacaine (R)-induced death of isolated sensory neurons was assessed.Methods: The trypan blue exclusion assay was used to assess death of sensory neurons isolated from adult male Sprague-Dawley rats. Drugs were applied, alone or in combination, for 2 or 24 hrs at 37°C.Results: Neuronal viability was halved by 24-hr exposure to R (2.5 mg/mL), far exceeding the neurotoxicity of C, B, D, or M (at 2-100 times estimated clinical concentrations). Plain M at twice the estimated clinical concentration produced a small but significant increase in neurotoxicity at 24 hrs. After 2-hr exposure, high concentrations of B, C, and M increased the neurotoxicity of R; the combination of R + M killed more than 90% of neurons. Estimated clinical concentrations of C + B (plus 66 μg/mL D) had no influence on (i) R-induced neurotoxicity, (ii) the increased neurotoxicity associated with the combination of R + M, or (iii) the neurotoxicity associated with estimated clinical concentrations of M. There was increased neurotoxicity with 133 μg/mL D combined with R + C + B.Conclusions: Results with R reaffirm the need to identify ways to mitigate local anesthetic-induced neurotoxicity. While having no protective effect on R-induced neurotoxicity in vitro, future research with adjuvants should address if the C + B + D combination can enable reducing R concentrations needed to achieve equianalgesia (and/or provide equal or superior duration, in preclinical in vivo models).