RT Journal Article SR Electronic T1 Machine learning approaches in predicting ambulatory same day discharge patients after total hip arthroplasty JF Regional Anesthesia & Pain Medicine JO Reg Anesth Pain Med FD BMJ Publishing Group Ltd SP 779 OP 783 DO 10.1136/rapm-2021-102715 VO 46 IS 9 A1 Zhong, Haoyan A1 Poeran, Jashvant A1 Gu, Alex A1 Wilson, Lauren A A1 Gonzalez Della Valle, Alejandro A1 Memtsoudis, Stavros G A1 Liu, Jiabin YR 2021 UL http://rapm.bmj.com/content/46/9/779.abstract AB Background With continuing financial and regulatory pressures, practice of ambulatory total hip arthroplasty is increasing. However, studies focusing on selection of optimal candidates are burdened by limitations related to traditional statistical approaches. Hereby we aimed to apply machine learning algorithm to identify characteristics associated with optimal candidates.Methods This retrospective cohort study included elective total hip arthroplasty (n=63 859) recorded in National Surgical Quality Improvement Program dataset from 2017 to 2018. The main outcome was length of stay. A total of 40 candidate variables were considered. We applied machine learning algorithms (multivariable logistic regression, artificial neural networks, and random forest models) to predict length of stay=0 day. Models’ accuracies and area under the curve were calculated.Results Applying machine learning models to compare length of stay=0 day to length of stay=1–3 days cases, we found area under the curve of 0.715, 0.762, and 0.804, accuracy of 0.65, 0.73, and 0.81 for logistic regression, artificial neural networks, and random forest model, respectively. Regarding the most important predictive features, anesthesia type, body mass index, age, ethnicity, white blood cell count, sodium level, and alkaline phosphatase were highlighted in machine learning models.Conclusions Machine learning algorithm exhibited acceptable model quality and accuracy. Machine learning algorithms highlighted the as yet unrecognized impact of laboratory testing on future patient ambulatory pathway assignment.Data may be obtained from a third party and are not publicly available. The data are acquired from American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP): https://www.facs.org/Quality-Programs/ACS-NSQIP.