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ABSTRACT
Introduction  A novel, spinal cord stimulation 
(SCS) system with a physiologic closed-loop 
(CL) feedback mechanism controlled by evoked 
compound action potentials (ECAPs) enables the 
optimization of physiologic neural dose and the 
accuracy of the stimulation, not possible with any 
other commercially available SCS systems. The report 
of objective spinal cord measurements is essential 
to increase the transparency and reproducibility of 
SCS therapy. Here, we report a cohort of the EVOKE 
double-blind randomized controlled trial treated 
with CL-SCS for 36 months to evaluate the ECAP 
dose and accuracy that sustained the durability of 
clinical improvements.
Methods  41 patients randomized to CL-SCS 
remained in their treatment allocation and 
were followed up through 36 months. Objective 
neurophysiological data, including measures of 
spinal cord activation, were analyzed. Pain relief was 
assessed by determining the proportion of patients 
with ≥50% and ≥80% reduction in overall back and 
leg pain.
Results  The performance of the feedback loop 
resulted in high-dose accuracy by keeping the 
elicited ECAP within 4µV of the target ECAP 
set on the system across all timepoints. Percent 
time stimulating above the ECAP threshold was 
>98%, and the ECAP dose was ≥19.3µV. Most 
patients obtained ≥50% reduction (83%) and ≥80% 
reduction (59%) in overall back and leg pain with a 
sustained response observed in the rates between 
3-month and 36-month follow-up (p=0.083 and 
p=0.405, respectively).
Conclusion  The results suggest that a physiological 
adherence to supra-ECAP threshold therapy that 
generates pain inhibition provided by ECAP-
controlled CL-SCS leads to durable improvements in 
pain intensity with no evidence of loss of therapeutic 
effect through 36-month follow-up.

INTRODUCTION
Spinal cord stimulation (SCS) using a closed-
loop (CL) system informed by the elicited neural 
response as measured by evoked compound action 
potentials (ECAPs) represents a novel paradigm in 
the field of neuromodulation.1 2 ECAP-controlled 
CL-SCS enables continuous and automatic real-
time adjustment of the output of each electrical 
pulse to optimize the ECAP dose and accuracy of 
the stimulation. The dynamic environment between 
the electrodes and spinal cord requires real-time 
physiologic assessment via ECAPs and stimula-
tion adjustments to ensure that the dose accuracy 
is maintained despite continuous variation in the 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Spinal cord stimulation (SCS) can provide long-
term benefits to patients with chronic pain; 
however, patients may experience a loss of 
therapeutic effect over time.

WHAT THIS STUDY ADDS
	⇒ Evoked compound action potential (ECAP)-
controlled closed-loop (CL) SCS enables the 
collection of objective neurophysiological 
measurements that can be used to confirm 
continuous therapy delivery over time.

	⇒ This study represents one of the longest 
assessments of efficacy in the SCS literature 
and the longest for ECAP-controlled CL-SCS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE, OR POLICY

	⇒ An objective physiologic approach to SCS is 
essential to enable a reproducible therapy and 
outcomes.

	⇒ Patients who received ECAP-controlled CL-SCS 
obtained durable improvements in chronic pain 
with no evidence of loss of therapeutic effect 
to 3 years.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://rapm

.bm
j.com

/
R

eg A
nesth P

ain M
ed: first published as 10.1136/rapm

-2024-105370 on 15 M
arch 2024. D

ow
nloaded from

 

http://www.rapm.org
http://rapm.bmj.com/
http://orcid.org/0000-0002-3823-9610
http://orcid.org/0000-0001-8907-7730
http://orcid.org/0000-0002-0864-9846
http://orcid.org/0000-0001-6485-7415
https://doi.org/10.1136/rapm-2024-105370
https://doi.org/10.1136/rapm-2024-105370
http://crossmark.crossref.org/dialog/?doi=10.1136/rapm-2024-105370&domain=pdf&date_stamp=2024-03-15
http://rapm.bmj.com/


2 Mekhail NA, et al. Reg Anesth Pain Med 2024;0:1–8. doi:10.1136/rapm-2024-105370

Original research

distance between the electrodes and the spinal cord. The SCS 
system used in the current study is the only FDA-approved 
system for chronic pain that meets the FDA definition of a 
physiologic CL control system.3 4 Fixed-output, open-loop SCS 
(OL-SCS) systems deliver a constant electrical output without 
consideration of these dynamic changes, which can result in vari-
ations in spinal cord activation.

The loss of the therapeutic effect over time has been a major 
limitation of SCS therapy. While often described in the SCS 
literature as tolerance or habituation, these pharmacodynamic 
mechanisms5 do not accurately describe the loss of therapeutic 
effect observed with SCS. ECAP-controlled CL-SCS enables 
the collection of objective neurophysiological measurements 
which can be assessed over time to detect signs of the loss of 
therapeutic effect. We operationally define the loss of thera-
peutic effect as the deterioration over time in pain relief or 
other biopsychosocial components contributing to a patient’s 
chronic pain experience with the same neural dose of stimula-
tion delivered.

The effects of OL-SCS for chronic pain have been evaluated 
in randomized controlled trials (RCTs), systematic reviews, 
and numerous observational studies.6–15 Most OL-SCS data 
derived from RCTs are limited to 6 months before patients in the 
comparator arm are allowed to cross over to the intervention 
arm.6–8 11 16 In these RCTs, the data analysis at later timepoints 
considered only those patients that completed the last follow-up 
assessment.

Previous publications of the EVOKE participant, investigator, 
and outcome assessor-blinded, parallel-arm RCT have reported 
the efficacy and safety of CL-SCS compared with OL-SCS for the 
full cohort through 36 months of follow-up.17–19 The 36-month 
analysis of the EVOKE RCT comparing CL-SCS to OL-SCS 
that followed best practices using the intention-to-treat (ITT) 
principle with imputation for missing data has been previously 
published.19 Presented here is the analysis of the subjects who 
were randomized to CL-SCS and chose to remain in CL-SCS 
following the self-selected crossover through 36 months to eluci-
date the neurophysiological data that sustained the durability of 
physiologic CL-SCS therapy when received, as intended, over 
the long-term. The analysis in the current study of patients 
who completed the follow-up is consistent with other previous 
reports of SCS.20–24

MATERIALS AND METHODS
Study design, participants, trial procedure, and SCS system
Study design, participants, and trial procedure to 36 months of 
follow-up are reported in detail elsewhere19 and presented in 
online supplemental material 1 for completion. The neuromod-
ulation system, physiologic CL controller (Evoke System, Saluda 
Medical, Artarmon, Australia), provided ECAP-controlled 
CL-SCS and the ability to measure neural activation. All patients 
included in the current analysis were initially randomized to and 
completed the 36-month follow-up visit in the CL-SCS arm.

Outcomes
Objective device data
Objective device data collected provide information on device 
settings, system utilization, dose, and system performance.

Device settings (stimulation frequency and pulse width)
Programming parameters including frequency (Hz) and pulse 
width (µs) were collected.

System utilization
System utilization was defined as the proportion of time the 
system was on for the week prior to the scheduled visit.

Dose (ECAP dose, electrical dose, dose ratio, dose-response, and 
dose sensitivity)
The time period for these data includes the out-of-clinic neural 
activation for the week leading up to the scheduled visit that 
produced the clinical outcomes reported.

ECAP dose or neural dose is defined by the median ECAP 
level (normalized ECAP amplitude (µV)). The electrical dose is 
defined by the charge (µC/pulse), the product of pulse width(µs), 
and the current amplitude (mA) (µC=current amplitude (mA) × 
pulse width (µs) × 1A/1000mA). Dose-response and dose sensi-
tivity were defined as the relationship between electrical dose (ie, 
charge) and neural activation levels (ECAPs (µV)) at perception 
threshold, comfort, and maximum (ie, discomfort threshold). 
Dose sensitivity is the slope of the dose-response curve (µV/µC).

The dose ratio is determined by the estimated current (mA) at 
the median ECAP level divided by the current (mA) at the ECAP 
threshold. The dose ratio allows individualization of a patient’s 
neural dose using their spinal cord sensitivity (slope of the ECAP 
amplitude to current curve) and their ECAP threshold, such 
that it is transferable across patients. This metric normalizes for 
electrode-cord distance and distances between stimulation and 
recording electrodes.

Dose accuracy
The ability of the system to minimize the error between the ECAP 
target and measured ECAP was assessed in clinic. The dose accu-
racy is defined by the root mean square error of recorded ECAPs 
compared with the ECAP target and is based on µV of deviation 
from the ECAP target.

Holistic treatment response
The assessment of pain relief and patient-reported outcome 
measures used are reported elsewhere19 and presented in online 
supplemental material 1 for completion. The treatment response 
was assessed by attaining minimal clinically important differences 
(MCIDs) for the visual analog scale (VAS), Oswestry Disability 
Index (ODI), Profile of Mood States (POMS), Pittsburgh Sleep 
Quality Index (PSQI), and generic health-related quality of life 
(HRQoL, EuroQol 5-Dimension 5-level (EQ-5D-5L)). The 
breadth of treatment response refers to the number of domains 
in which at least one MCID was achieved while the depth of 
treatment response refers to the number of MCIDs obtained in 
each domain. Holistic treatment response was determined for 
each patient based on attaining at least one MCID improvement 
in all domains that were impaired at baseline when compared 
with normative US values.25 26 In addition, the total amount of 
MCIDs achieved was calculated for each domain and pooled for 
all domains to derive a cumulative responder score. The holistic 
MCID considered the cumulative responder score adjusted for 
the number of impaired domains at baseline for each patient.

Adverse events
All adverse events (AEs) were reported by the investigators 
throughout the study and reviewed and adjudicated by a blinded, 
independent clinical events committee.

Statistical analysis
Descriptive statistics were provided as mean (SD), median 
(IQR), or number of observations (percentage), as appropriate. 
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Paired-sample t-tests were used to compare differences in 
outcome measures between baseline and follow-up. Mean differ-
ence (MD) and 95% CIs were reported. Wilcoxon signed-
rank test was used to compare differences between medians. 
Cochran-Mantel-Haenszel test was used to compare differences 
in matched categorical data. Additionally, a longitudinal mixed 
effect quantile regression for electrical dose changes over time 
was performed.27 Statistical significance was judged at the 5% 
level. Statistical analyses were conducted using SAS statistical 
softwareV.9.4 (SAS Institute) and R V.4.3.1.

RESULTS
67 patients were randomized to CL-SCS and underwent a 
screening trial procedure (figure 1). 59 patients reported ≥50% 

reduction in overall back and leg pain VAS score and proceeded 
to implantation of the SCS leads and pulse generator. Baseline 
demographics and other characteristics were largely similar 
between the patients initially randomized to CL-SCS and those 
that completed 36-month follow-up with this intervention 
(online supplemental table S1). There was a slightly greater 
proportion of patients taking opioids at baseline in the initial 
group randomized to CL-SCS. The most common etiology 
was radiculopathy both for the patients initially randomized to 
CL-SCS (61/67, 91%) and those that completed the 36-month 
follow-up (37/41, 90%).

16 of 50 (32%) CL-SCS patients self-selected to cross over to 
OL-SCS at the 24-month timepoint. The most common reason 
to try the other stimulation mode was curiosity of experiencing 
the other mode of therapy (13/16 (81%)). 13 of the 16 patients 
who chose to try the other stimulation mode returned to CL-SCS 
(7 patients after 1 month and 6 patients after 3 months). 41 
CL-SCS patients, including the patients who did not cross over 
and those who crossed and returned to CL-SCS, completed the 
36-month follow-up visit. None of the reasons for withdrawal 
were due to a lack of therapeutic effect or an AE that was related 
to the device or stimulation (a study flow diagram with detailed 
reasons for withdrawals is presented in online supplemental 
figure S1). All patients were blinded to the mode of stimulation 
administered from randomization through to the last assessment 
at 36 months.

Neural activation
The performance of the feedback loop resulted in high dose 
accuracy by keeping the elicited ECAP within 4µV of the target 
ECAP set on the system across all timepoints (table  1). The 
median stimulation frequency was 40 Hz (IQR 30–50 Hz) across 
all timepoints. SCS system utilization was >77%, percent time 
stimulating above ECAP threshold was >98%, ECAP dose was 
≥19.3µV, and the dose ratio was >1.3 (ie, 30% above ECAP 
threshold) on average at all timepoints. While the clinical effect 
was maintained through 36 months, there was a gradual decrease 
in the dose requirements over time, with less system utilization 
(p<0.001), percent time stimulating above ECAP threshold, and 
ECAP dose observed at 36 months compared with 3 months. 
Additionally, there was a significant left shift in the dose-response 
curves at perception, comfort, and maximum (discomfort) 
threshold from 3 months to 36 months (figure 2). A longitudinal 
mixed effect quantile regression for electrical dose changes over 
time demonstrated a statistically significant left shift in the dose-
response curve (ie, a reduction in median stimulation dose) from 
3-month to 12-month, 24-month, and 36-month follow-up at 
perception and comfort dose and from 3-month to 36-month 
follow-up at a maximum dose (online supplemental table S2). 
Spinal cord sensitivity values (µV/µC), the slope of the dose-
response curve which describes the sensitivity of the spinal cord 
to stimulation, did not significantly change over time from 3 
months to 36 months.

Holistic treatment assessment
Overall back and leg pain intensity reduction, additional patient-
reported outcomes collected including ODI, POMS, EQ-5D-5L, 
and PSQI and treatment response for individual domains are 
presented in online supplemental material 5 and 6.

The average improvement in each domain was greater than 
the clinically meaningful threshold (ie, 1 MCID) at all time-
points through 36 months (online supplemental figure S5). 
For VAS, ODI, and POMS, >2 MCIDs were reported, and for 

Figure 1  Patient disposition in the ECAP-controlled CL-SCS arm 
through 36 months.
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EQ-5D-5L, >3 MCIDs were observed at all timepoints (online 
supplemental table S4, figure 3). The cumulative responder score 
which reflects the total number of MCIDs obtained across all 
domains was >11 MCIDs at all timepoints (online supplemental 
table S4, online supplemental figure S6). No differences were 
observed in the cumulative responder score and components 
between 3-month and 36-month timepoints (all p≥0.05). The 
holistic MCID, which adjusts the cumulative responder score by 
the number of impaired baseline domains, was ≥2.5 at all time-
points (online supplemental table S4, figure 3).

All patients were responders for at least one domain at 
each timepoint, with 93% and 85% of patients at 36-month 
follow-up considered responders for ≥2 and ≥3 domains, 
respectively (online supplemental table S5). Holistic treatment 
response characterized by the improvement of ≥1 MCID in all 
domains impaired at baseline was reported by 54% of patients at 
36-month follow-up.

Adverse events
Over the course of 36 months, 17 study-related AEs were 
observed in 11/41 (26.8%) patients (online supplemental table 
S6). The most common AE was lead migration (four events in 
four (9.8%) patients) followed by implantable pulse generator 
pocket pain (three events in three (7.3%) patients). There were 
no study-related serious AEs in this group through 36-month 
follow-up.

DISCUSSION
A sustained response to CL-SCS between 3 months and 
36 months in the proportion of patients who obtained ≥50% and 
≥80% reduction in pain and in the cumulative responder score 
was observed. Furthermore, the durability of ECAP-controlled 
CL-SCS over 36 months was evidenced by no degradation of 
the performance of the physiologic CL controller to maintain 
dose accuracy. While the clinical effect was maintained at the 
same level, the ECAP dose requirements were significantly less at 
36 months compared with 3 months. The stability of therapeutic 
effect while requiring reduced ECAP dose discredits the notion 
previously discussed in SCS publications that consistent activa-
tion may lead patients to develop a tolerance to SCS over time 
and that habituation may explain the loss of therapeutic effect 
in SCS. Patients received stimulation above ECAP threshold 
more than 98% of this time with an average frequency of 40 Hz. 
Therefore, the ECAP-controlled CL-SCS system was activating 
nerve axons 40 times a second for the majority of the time over 
3 years. If a loss of therapeutic effect were an issue for ECAP-
controlled CL-SCS, we would expect to see increased usage and/
or higher ECAP dosages, but in fact, we found the opposite, 
that less activation was needed to maintain pain relief over time. 
Additionally, this phenomenon could manifest itself as a reduced 
level of neural activation for a given input stimulus over time 
(other things being equal) which would cause the dose-response 
curves shown in figure 2 to move to the right over time as more 

Table 1  Objective measures of program parameters and neural activation with CL-SCS through 36 months

3 months 12 months 24 months 36 months
Difference between 3 
months and 36 months*

Stimulation frequency (Hz) 40
(40–50)

40
(30–40)

40
(30–40)

40
(30–40)

0.090

Pulse width (μs) 320
(240–360)

285
(240–350)

310
(255–355)

320
(270–360)

0.448

Dose accuracy (in-clinic RMSE, μV) 3.1
(1.8–4.6)

3.9
(2.4–5.8)

3.2
(2.2–5.1)

3.7
(2.7–5.4)

0.400

System utilization (% time on) 90.0
(76.9–97.0)

88.4
(65.6–9.5)

88.0
(46.1–96.7)

77.6
(0.9–95.9)

<0.001

Percent time stimulating above ECAP threshold (%, out 
of time on)

99.9
(95.6–100.0)

100.0
(94.7–100.0)

99.2
(65.7–100.0)

97.9
(50.7–100.0)

0.009

ECAP dose
(normalized median ECAP amplitude, μV)

31.1
(16.9–67.6)

29.7
(11.7–67.6)

22.7
(5.5–47.2)

19.3
(3.1–34.8)

0.005

Dose ratio
(estimated current at median ECAP amplitude/current 
at ECAP threshold)

1.42
(1.24–1.56)

1.42
(1.31–1.53)

1.34
(1.17–1.50)

1.34
(1.17–1.42)

0.071

Dose-response curve Perception threshold 
charge (µC/pulse)

1.7
(1.0–2.6)

1.4
(0.9–2.4)

1.4
(1.0–2.3)

1.2
(0.9–1.9)

0.024

Perception threshold
ECAP (μV)

6.0
(2.0–14.5)

4.5
(1.0–14.0)

6.0
(1.0–15.0)

4.0
(1.5–9.0)

0.390

Comfort threshold charge 
(µC/pulse)

2.3
(1.5–3.3)

1.7
(1.3–2.9)

1.7
(1.2–2.8)

1.7
(1.1–2.7)

0.013

Comfort threshold
ECAP (mv)

31.5
(12.5–62.0)

26.5
(18.0–62.0)

25.0
(10.0–49.0)

21.5
(11.0–45.0)

0.135

Maximum Threshold
Charge (µC/pulse)

3.1
(1.8–4.2)

2.2
(1.6–3.6)

2.1
(1.6–3.4)

2.2
(15–3.0)

0.018

Maximum Threshold
ECAP (μV)

97.0
(69.0–219.5)

110.0
(72.0–170.0)

95.0
(52.0–154.0)

95.0
(58.5–132.5)

0.081

Dose sensitivity (µV/µC) 131.4
(50.4–216.9)

112.1
(63.4–243.4)

149.0
(60.8–219.7)

159.0
(49.6–223.9)

0.593

Median (IQR).
*Wilcoxon signed-rank test.
ECAP, evoked compound action potential; RMSE, root mean square error.
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current would be required to achieve the same degree of activa-
tion. In fact, these dose-response curves appear to be remark-
ably stable between 12 and 36 months and actually moved left 
between 3 months and 12 months. Some care should be taken 
when interpreting these data as factors such as programming 
parameter alterations, and medication usage can affect these 
curves. These data strongly suggest that if a patient uses their 
ECAP-controlled CL-SCS system as intended, they may require 
less therapy over time to achieve the same results, and therefore, 

the loss of therapeutic effect (usually described as tolerance or 
habituation) is not a failure mode for ECAP-controlled CL-SCS.

Neurophysiological data may also tell us something about the 
functioning of the dorsal column fibers. We saw no differences 
in the sensitivity of the spinal cord to stimulation over time. 
That is, for a given increase in stimulation (µC), an equivalent 
increase in the number of fibers activated was seen, manifested 
by the increasing ECAP size (µV). Furthermore, there were no 
reports of neurological deficit for ECAP-controlled CL-SCS. 

Figure 2  Dose-response curves for CL-SCS through 36 months. The dose-response curves showed a significant left shift from a 3-month to 36-month 
visit. The dose-response relationship was characterized by assessing the amplitude of the ECAP response in relation to the electrical dose, measured 
in microcoulombs per pulse (µC/pulse). To illustrate this relationship, median dose values and corresponding responses were plotted at three distinct 
levels: perception, comfort, and maximum (discomfort threshold). CL-SCS, closed-loop spinal cord stimulation; ECAP, evoked compound action 
potential.

Figure 3  Cumulative MCIDs for each domain and for holistic MCID through 36 months. No significant differences were observed in the number of 
MCIDs achieved in the holistic domains between the 3-month and 36-month timepoints (p>0.05 for all). ECAP dose requirements were significantly 
less between the 3-month and 36-month timepoints (3 months (32.3 µV), 12 months (29.7 µV), 24 months (23.9 µV), 36 months (19.3 µV); p=0.001). 
HRQoL, health-related quality of life; MCID, minimal clinically important difference; ODI, Oswestry Disability Index; POMS, Profile of Mood States; 
PSQI, Pittsburgh Sleep Quality Index; SEM, SE error of mean; TMD, total mood disorder; VAS, visual analog scale.
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The type, nature, and rate of AEs for ECAP-controlled CL-SCS 
were comparable with reports of other SCS modalities. In fact, 
CL-SCS AE rates even at 36 months were at the low end of the 
range reported in the literature (online supplemental figure 
S7). 40 Hz ECAP-controlled CL-SCS does not appear to cause 
neurophysiological changes that could affect its efficacy or cause 
patient harm.

The study results show that ECAP-controlled CL-SCS can 
lead to clinically significant improvements in the long term. At 
36 months, a large majority of patients (83%) obtained ≥50% 
reduction, and 59% obtained a ≥80% reduction in overall back 
and leg pain. For those patients who obtained ≥50% response at 
3 months (88%), there was a >90% chance that they would main-
tain this response through 36 months. This is an important finding 
for patient and clinician confidence in the therapy. In addition to 
pain intensity, statistically and clinically significant improvements 
were observed in physical function, emotional function, sleep, and 
HRQoL. All patients obtained a clinically meaningful change in at 
least one of the five outcome domains at all timepoints through 
36-month follow-up, and >50% of patients were holistic treatment 
responders with a clinically meaningful change in all outcomes 
assessed. The holistic MCID score was ≥2.5 MCIDs, that is, more 
than double the threshold for a clinically meaningful response 
across the individual baseline impaired domains at all timepoints. 
In parallel with the pain reduction and multimodal improvement 
observed, voluntary opioid reduction or elimination was observed 
in 55% of patients at 36 months. Comparative results of ECAP-
controlled CL-SCS versus OL-SCS are presented elsewhere.19

Reports of SCS outcomes at 36 months or longer show that 
this therapy can provide long-term benefits to patients with 
chronic pain.20 22 28 29 The pain intensity observed in the current 
study at 36 months was lower (2.06), and the reduction in pain 
was greater (6.14) than that reported in other studies at the 
same timepoint (table 2). A greater proportion of patients that 
received ECAP-controlled CL-SCS obtained ≥50% and ≥80% 
reduction in pain at 36 months when compared with OL-SCS 
systems including high-frequency, burst, and paresthesia-based 
stimulation (online supplemental figure S8, table 2).

Strengths and weaknesses
To the authors’ knowledge, the observation that less stimulation 
therapy may be needed to achieve the same therapeutic effect 
over time with ECAP-controlled CL-SCS is the first such neuro-
physiological evidence of this with any SCS therapy. ECAP-
controlled CL-SCS enables the measurement of the neural dose 
from which the dose-response can be observed and understood. 
Future studies are needed to confirm this finding.

We report the longest follow-up of patients who received 
ECAP-controlled CL-SCS. Although a single-arm report of an 
RCT, the outcomes reported by those patients who completed 
the study receiving the intervention as intended merit consid-
eration. The results of the current report of CL-SCS patients 
who completed the 36-month follow-up was performed to eval-
uate the durability of the therapy when received as intended and 
shows greater improvements for all outcomes for patients who 
received CL-SCS than those reported in the EVOKE RCT ITT 
analysis.

CONCLUSIONS
Physiological adherence to the prescribed neural activation level 
provided by ECAP-controlled CL-SCS demonstrates the poten-
tial for sustainable and durable improvements in pain intensity 
and the multimodal domains impacted by the chronic pain expe-
rience. We found no evidence of the loss of therapeutic effect 
through 36-months of follow-up which suggests that the loss of 
therapeutic effect (usually described as tolerance or habituation) 
is not a failure mode for ECAP-controlled CL-SCS. These find-
ings call into question the previously held beliefs that tolerance 
or habituation occurs with long-term use of SCS. This objective 
physiologic approach to SCS enables a reproducible therapy that 
results in long-term improvements in the biopsychosocial aspects 
of chronic pain as experienced by the individual. At 36-month 
follow-up, most patients reported high levels of pain relief, more 
than 50% were holistic treatment responders, and all patients 
reported at least one clinically meaningful change in an impaired 
domain at baseline.

Table 2  36-month evidence for SCS

Study (n) Indication

Pain intensity Change in HRQoL life

PGIC
System 
utilization ECAP doseAt follow-up

Point 
reduction

≥50% 
reduction

≥80% 
reduction EQ-5D-5L* EQ-VAS

EVOKE CL-SCS (n=41) CBLP VAS 2.06† 6.14† 82.9% 58.5% 0.27 34.0 90.2% 80.3% 19.3μV

Kemler et al (n=20)28 CRPS-T1 VAS 4.1 2.5 NR NR NR NR NR NR NR

Remacle et al (n=29)29 PSPS-T2 LP NRS 
Mdn 3
BP NRS 
Mdn 5

LP Mdn 4
BP Mdn 4

NR NR NR NR NR NR NR

Eldabe et al (n=66)20‡ Neuropathic 
pain

NRS 5.03 2.31 31.8% 12.1% 0.21 4.59 NR NR NR

Eldabe et al PS (n=28)20‡ NRS 4.34 2.80 46.4% 17.9% 0.22 9.14 NR NR NR

Eldabe et al HF (n=23)20‡ NRS 5.72 1.87 21.7% 4.3% 0.16 −0.55 NR NR NR

Eldabe et al Burst (n=14)20‡ NRS 5.29 2.04 21.4% 7.1% 0.28 3.57 NR NR NR

Van Beek et al (n=34)22 PDN NRS Day 3.8
NRS Night 3.9

Day 2.9
Night 2.8

Day 47.1%
Night 35.3%

NR NR NR 52.9% NR NR

*Different tariffs for the EQ-5D (country-specific valuation methods) were used in the studies.
†VAS (0–100 mm) converted to VAS (0–10 cm) by dividing pain scores by 10.14

‡Calculated using individual patient data for the TRIAL-STIM overall population, PS, HF, and burst outcomes for ≥50% reduction, ≥80% reduction, and change in EQ-5D-5L. 
Programming method missing for one patient. Differences in study setting need to be considered when interpreting differences between study results (eg, healthcare system).
BP, back pain; CBLP, chronic back and leg pain; CL-SCS, closed-loop spinal cord stimulation; CRPS-T1, complex regional pain syndrome type 1; HF, high frequency; HRQoL, health-
related quality of life; LP, leg pain; Mdn, median; NR, not reported; NRS, numerical rating scale; NTG, no trial group; PDN, painful diabetic neuropathy; PGIC, patient global 
impression of change; PS, paresthesia-based stimulation; PSPS-T2, persistent spinal pain syndrome type 2; TG, trial group; VAS, visual analog scale.
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