American Society of Regional Anesthesia and Pain Medicine expert panel recommendations on point-of-care ultrasound education and training for regional anesthesiologists and pain physicians—part I: clinical indications

Stephen C Haskins 1,2, Yuriy Bronshteyn, 3 Anahi Perlas 4, 6 Kariem El-Boghaddy 5, 6 Joshua Zimmerman, 6 Marcos Silva, 4 Karen Boretsky, 7 Vincent Chan, 4 Richelle Kruisselbrink, 8 Melissa Byrne, 9 Nadia Hernandez, 10 Jan Boublik, 11 William Clark Manson, 11, 12 Rosemary Hogg, 13 Jonathan N Wilkinson, 14 Hari Kalagara, 15 Jemiel Nejm, 1, 2 Davinder Ramsingh, 16, 19 Hariharan Shankar, 17 Antoun Nader, 18 Dmitri Souza, 19 Samer Narouze 19

ABSTRACT

Point-of-care ultrasound (POCUS) is a critical skill for all regional anesthesiologists and pain physicians to help diagnose relevant complications related to routine practice and guide periprocedural management. In an effort to inform the regional anesthesia and pain community as well as address a need for structured education and training, the American Society of Regional Anesthesia and Pain Medicine (ASRA) commissioned this narrative review to provide recommendations for POCUS. The guidelines were written by content and educational experts and approved by the Guidelines Committee and the Board of Directors of the ASRA. In part I of this two-part series, clinical indications for POCUS in the perioperative and chronic pain setting are described. The clinical review addresses airway ultrasound, lung ultrasound, gastric ultrasound, the focus assessment with sonography for trauma examination and focused cardiac ultrasound for the regional anesthesiologist and pain physician. It also provides foundational knowledge regarding ultrasound physics, discusses the impact of handheld devices and finally, offers insight into the role of POCUS in the pediatric population.

INTRODUCTION

Point-of-care ultrasound (POCUS) has become a powerful tool at the bedside because of the potential for improving patient management. Modern ultrasound (US) equipment provides excellent image quality, portability, simplicity and availability in various clinical settings. Although ultrasound and echocardiography have historically been within the purview of radiologists and cardiologists, the emergence of POCUS as a bedside tool to supplement the physical examination has resulted in tremendous expansion into other subspecialties. Although there is overlap, there are unique subspecialty clinical applications. For example, ultrasound visualization of peripheral nerves for procedural purposes has a significant benefit to regional anesthesiologists and chronic pain physicians despite having separate indications in radiology. It is this diversity in clinical ultrasound practice among subspecialties that underlies the American Medical Association’s recommendation that ‘policy on ultrasound imaging…(and) criteria for granting ultrasound privileges (be) based upon background and training for the use of ultrasound technology and strongly recommends that these criteria are in accordance with recommended training and education standards developed by each physician’s respective specialty’.4 Based on these recommendations, there exist guidelines for training, competency and credentialing in POCUS in emergency medicine5 and critical care medicine.6, 7 and there is currently a work product for POCUS available through the American Society of Anesthesiologists (ASA).8 Despite the availability of significant resources in the form of numerous live courses9 and an educational review series on POCUS,10–15 no specific guidelines or recommendations exist on the use of POCUS for regional anesthesiologists and pain physicians. Given ASRA’s early leadership in providing recommendations for procedural-based bedside ultrasound in the form of ultrasound-guided regional anesthesia and ultrasound-guided intervention, there was a call to address the need for formal POCUS recommendations.1–3

The American Society of Regional Anesthesia and Pain Medicine (ASRA) Guidelines Committee appointed a task force to develop recommendations for the clinical indications for POCUS as a foundation for education and training in POCUS. The task force aims to provide alignment between regional anesthesiologists and acute and chronic pain physicians for training recommendations in the perioperative and/or chronic pain setting. The
recommendations are based on the current best evidence and will consider each clinical setting’s commonalities and uniqueness.

In part I of a two-part review article series, we will discuss the clinical indications for POCUS for the regional anesthesiologist and pain physician. The skills discussed are airway ultrasound, lung ultrasound (LUS), gastric ultrasound, the focused assessment with sonography for trauma (FAST) examination and focused cardiac ultrasound (FoCUS). The authors acknowledge that musculoskeletal ultrasound and neurosonography are other emerging diagnostic skills but are outside the scope of this POCUS article.

We also provide foundational knowledge regarding ultrasound physics, the impact of handheld devices and finally, insight into the role of POCUS in the pediatric population. Ultimately, these task force recommendations will outline the clinical indications of POCUS and lay the foundation for defining criteria for education, training, competency and credentialing for the regional anesthesia and pain physician.

METHODS
An expert panel was assembled for this project based on the recommendations from the ASRA’s Guidelines Committee and Board of Directors. This panel consists of national and international experts in POCUS. Specifically, the qualifications for panel selection involved multiple publications in POCUS, leadership through participation in and/or development of POCUS education and expertise and leadership in regional anesthesia and pain medicine to ensure all topics are accurately covered and appropriate for education and training recommendations. To define areas of competency, a systematic literature search (MEDLINE, PubMed and Ovid) was performed, looking at clinical indications and utilization of POCUS for anesthesiologists, regional anesthesiologists and pain physicians. Findings were not filtered by risk of bias or Grading of Recommendations, Assessment, Development and Evaluations (GRADE) of evidence. When appropriate, recommendations were drawn from other subspecialties such as critical care, cardiology, emergency medicine, surgery and radiology. Keywords used included: point-of-care ultrasound, ultrasound, regional anesthesiology, perioperative point-of-care ultrasound, chronic pain, acute pain, ultrasonography/standards, clinical competency/standards, ultrasound physics, curriculum, education, training, barriers to education, barriers to training, airway ultrasound, lung ultrasound, pulmonary ultrasound, focused cardiac ultrasound, gastric ultrasound, pediatric point-of-care ultrasound and handheld ultrasound. Based on these relevant clinical skills (airway ultrasound, lung ultrasound, focused cardiac ultrasound, gastric ultrasound, abdominal/pelvic ultrasound), corresponding groups were tasked with describing educational goals and requirements for competency for regional anesthesiologists and pain physicians. The writing process was then conducted in leader-facilitated groups. Contributing authors were granted access to review the document in its entirety and gave final approval to the recommendations.

Ultrasound physics and equipment requirements for POCUS
Ultrasound imaging is a user-dependent tool that requires knowledge of the fundamental principles of ultrasound and the technical skills for acquisition, optimization and accurate interpretation of images. Most regional anesthesiologists and pain physicians are familiar with linear and curvilinear transducers for ultrasound-guided procedures and the general principles of ultrasound image generation, common artifacts and the sonoanatomy of neurovascular structures. To perform an organ-based ultrasound, such as echocardiography, clinicians will need to familiarize themselves with lower frequency transducers, such as the phased array, as well as the wide dynamic range capacitive micromachined ultrasound transducers (CMUTs). The artifacts associated with phased array processing, such as ghosting, and Doppler measurements, such as aliasing, are unique and require advanced understanding.

Medical ultrasound is mechanical energy in the form of high frequency (>20 kHz) sound waves emitted from a piezoelectric transducer or a CMUT. The majority of the waves pass through tissue with different densities and resistance to sound (acoustic impedance), and a small fraction is reflected toward the transducer. Returned ultrasound signals alter the shape of the piezoelectric crystals or flexible plates of the CMUT, creating an electrical current proportional to the signal’s strength, which is then processed to form a two-dimensional image. Concepts such as reflection, refraction, scattering and attenuation play an essential role in ultrasound image interpretation; however, given the scope of this article, we suggest learners reference other fundamentals of ultrasound text to explore these topics further.

Ultrasound artifacts play an important role in POCUS imaging and interpretation. With POCUS, navigating through acoustic barriers such as aerated lungs and the bony framework of the chest wall results in artifacts that can either contribute to misdiagnosis or be used as diagnostic aids. For example, A-lines and B-lines, discussed in detail in the LUS section, can be used to guide management in focused LUS. See Table 1 for a list of common ultrasound artifacts.

For POCUS, transducer selection ensures optimal axial and lateral resolution. High-frequency linear (HFL) transducers provide a rectangular image; however, due to increased attenuation, imaging depth is limited. Therefore, HFL probes are ideal for superficial structures such as the pleura and the airway. Convex (curvilinear) sequential array transducers are arranged in a curved fashion producing a fan-shaped image. Convex transducers have a lower frequency and thereby provide improved image resolution of deeper structures (penetration), a wider image in the far field and are best for imaging intraperitoneal and retroperitoneal organs. For intrathoracic structures such as the heart and large vessels, low-frequency phased array transducers with a small footprint that use electronic field steering to image beyond acoustic barriers, such as ribs, produce

| Table 1 Knowledge of ultrasound physics and equipment

<table>
<thead>
<tr>
<th>Ultrasound physics</th>
<th>Artifacts</th>
<th>Equipment</th>
<th>Instrument functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>Axial</td>
<td>Piezoelectric transducers</td>
<td>Gain</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Shadowing</td>
<td>Linear array</td>
<td>Time gain</td>
</tr>
<tr>
<td>Frequency</td>
<td>Comet tail</td>
<td>Convex array</td>
<td>Compensation</td>
</tr>
<tr>
<td>Intensity</td>
<td>Enhancement</td>
<td>Convex array</td>
<td>Preset</td>
</tr>
<tr>
<td>Absorption</td>
<td>Reverberation</td>
<td>Convex array</td>
<td>Depth</td>
</tr>
<tr>
<td>Impedance</td>
<td>Mirroring</td>
<td>Convex array</td>
<td>Focus</td>
</tr>
<tr>
<td>Attenuation</td>
<td>Lateral</td>
<td>Convex array</td>
<td>Brightness mode</td>
</tr>
<tr>
<td>Reflection</td>
<td>Side lobes</td>
<td>Convex array</td>
<td>Motion mode</td>
</tr>
<tr>
<td>Refraction</td>
<td>Refraction</td>
<td>Convex array</td>
<td>Color Doppler</td>
</tr>
<tr>
<td>Scattering</td>
<td>Equipment</td>
<td>Convex array</td>
<td>Power Doppler</td>
</tr>
<tr>
<td>Harmonics</td>
<td>Range ambiguity</td>
<td>Convex array</td>
<td>Pulse wave Doppler</td>
</tr>
<tr>
<td>Axial resolution</td>
<td>Ailasing</td>
<td>Convex array</td>
<td>Spectral Doppler</td>
</tr>
<tr>
<td>Lateral resolution</td>
<td>Ghosting</td>
<td>Convex array</td>
<td>Harmonics</td>
</tr>
</tbody>
</table>

CMUT, capacitive micromachined ultrasound transducer; CPUT, capacitive piezoelectric ultrasound transducer.
a cone-shaped image of the heart. When comparing capacitive transducers (CMUT) to traditional piezoelectric transducers, the CMUT transducer’s advantages are a larger bandwidth and lower production cost.21 CMUT arrays can be manufactured with different operating frequencies and geometries from a single silicon wafer, allowing full-body imaging with a single transducer.22 The disadvantage is that CMUT technology is relatively new compared with piezoelectric transducers; therefore, the imaging quality and applications do not match traditional transducers.

CLINICAL INDICATIONS AND EVIDENCE FOR POCUS

We will focus on the clinical indications and evidence for airway ultrasound, LUS, gastric ultrasound, the FAST examination and FoCUS for the regional anesthesiologist and pain physician.

Although the clinical benefits of POCUS have been widely advocated by many medical specialties,8, 23–27 the apparent positive impact of POCUS on patient outcomes has not consistently been demonstrated in a randomized, controlled trial for many reasons.28–29 First, POCUS is used as a diagnostic or monitoring tool. It is not a procedural intervention that can be easily randomized and directly attributed to improved patient outcomes. Second, POCUS is only one part of the complex sequence of medical care. As such, it is challenging to show that a single intervention can either lead to a meaningful outcome or overtreatment, overdiagnosis or potential iatrogenic injury. Finally, POCUS findings as an extension of the physical examination are heavily dependent on proper education and training, maintenance of competency, personal skills and experience and individual interpretation of the operator. With that said, what follows is the current best evidence supporting the clinical indications for POCUS.

Airway ultrasound

Point-of-care airway ultrasound can aid in the assessment and planning of perioperative or periprocedural airway management. Airway US can be used to predict potential difficult airway management. The measurement of the anterior neck has shown that the distance from the skin to the hyoid bone is highly predictive of difficult mask ventilation and intubation.30 In a patient with a concern for a ‘cannot intubate, cannot ventilate’ scenario, front of neck airway sonographic identification of the cricothyroid membrane is more accurate than palpation alone31–34 and more rapid for emergency airway access.35, 36 Of note, the cricothyroid membrane is highly dependent on neck position; therefore, one must maintain the same position or (following any movement of the neck) rescan to confirm location before attempting an emergency airway.

Airway ultrasound assessment of the cricoid cartilage compared with palpation has improved accuracy, facilitating the correct application of cricoid pressure.37, 38 Additionally, the efficacy of cricoid pressure can be assessed by visualization of esophageal compression.39

Confirmation of endotracheal intubation compared with endobronchial intubation with airway ultrasound was more sensitive and specific than chest auscultation when tracheal cuff dilation and bilateral pleural sliding was seen.39, 40 In the event of decreased or absent end-tidal carbon dioxide, as seen in cardiac arrest or other low output states, lung sliding can be used as a surrogate for endotracheal tube confirmation.41 And finally, it can facilitate nasogastric tube placement.30–40 Multiple studies have shown the benefit of ultrasound imaging in the correct placement of nasogastric tubes.42–44 See figure 1 for an example of airway ultrasound probe placement, anatomy and sonoanatomy.

There are advanced procedural applications of point-of-care airway ultrasound that we will briefly mention as they are beyond this document’s scope. Ultrasound-guided nerve blocks for airway anesthetization should be reserved for those with expertise in their performance.45 Landmark-based glossopharyngeal and superior laryngeal nerve blocks have been associated with higher plasma concentrations of local anesthesia, a higher incidence of local anesthetic systemic toxicity (LAST) and lower patient comfort than less invasive techniques.46 While ultrasound-guided techniques may provide more favorable results over traditional landmark-based approaches, the current evidence is insufficient to recommend them over non-invasive mucosal topicalization.

Additionally, a thorough ultrasound assessment of the neck for pathologies such as esophageal (Zenker) diverticulum or an aberrant vertebral artery before performing a stellate ganglion block can avoid potential complications.47, 48

The Indication, Interpretation, Acquisition, and Medical Decision-Making (I-AIM) Framework is a standardized, step-by-step guide for clinicians learning a new POCUS skill to identify the appropriate clinical scenarios where it can be used.48, 49 As airway ultrasound is an emerging skill for the regional anesthesiologists and pain physicians, table 2 provides a review of clinical case examples in the I-AIM Framework to facilitate knowledge comprehension, integration and translation into the clinical arena.

Lung ultrasound

Point-of-care LUS can be used to assess an acute or critically ill patient with respiratory distress as an extension to physical examination.50 LUS has superior diagnostic accuracy (both sensitivity and specificity) over many traditional imaging. Furthermore, LUS is faster to execute and allows repeated dynamic bedside assessment to monitor disease progression or regression (response to treatment) without radiation exposure.

Overall, LUS excels in its accuracy in detecting lung pathologies such as pneumothorax and pleural effusion (table 3). Additionally, LUS has the advantage of differentiating pleural effusion from lung consolidation, which is not always possible with a chest radiograph.51

Two large meta-analyses found the sensitivity and specificity of LUS for diagnosis of pneumonia to range between 85%–93% and 72%–93%, respectively.52, 53 For diagnosis of lung contusion, LUS has a higher degree of diagnostic accuracy than chest radiography with greater sensitivity (95% vs 27%) but similar specificity (96% vs 100%).54, 55 LUS is also superior to auscultation in confirming tracheal versus bronchial intubations with higher sensitivity (93% vs 66%) and higher specificity (96% vs 59%).40 A recent meta-analysis suggests a higher sensitivity (94%) and specificity (92.4%) with LUS to diagnose heart failure than routine clinical workup, including chest radiography and natriuretic peptides.56 B-lines are consistently accurate in the diagnosis and monitoring of pulmonary edema and other lung conditions such as acute respiratory distress syndrome, lung infection,57 connective-tissue disorders and lung fibrosis.58

LUS has been used for decades as a means to assess diaphragmatic function.59 The most common methods image the right and left hemidiaphragm using the liver and spleen as acoustic windows to record diaphragmatic movement in motion mode. The subcostal method, however, can be challenging, particularly on patients with large body habitus. An alternate approach is...
A. Probe Position

B. Anatomy/Sonoanatomy

Figure 1 Airway ultrasound (US) probe placement, anatomy and sonoanatomy. (A) Probe placement for airway US scanning. (B) Anatomy of the thyroid cartilage, cricoid cartilage and tracheal rings with corresponding sonoanatomy in transverse and sagittal planes. CC, cricoid cartilage; TC, tracheal cartilage. *Cricothyroid membrane.

To assess diaphragmatic function at the zone of apposition by observing diaphragm muscle thickening during the respiratory cycle.60 61 The zone of apposition is defined as the area of the diaphragm close to the lower rib cage where the diaphragm separates from the rib cage.

LUS is based predominantly on the interpretation of artifacts derived by air/tissue interface (eg, pleural line) and real anatomical images in the absence of air/tissue interface (eg, effusion and consolidation). Several lung artifacts (A-lines and B-lines) and signs (lung sliding and pulse) are commonly observed and are highlighted in figure 2.11 Interpretation of lung and pleural artifacts or ‘signs’ has led to the development of standardized protocols to evaluate the lung. These diagnostic protocols follow a step-by-step approach based on particular US profiles.62 In the bedside LUS in emergency protocol,62 profiles have been designed to assess pneumonia, congestive heart failure, chronic obstructive pulmonary disease (COPD), asthma, pulmonary embolism (PE) and pneumothorax with an accuracy >90%. The fluid administration limited by lung sonography protocol63 sequentially rules out an obstructive, cardiogenic, hypovolemic and distributive (usually septic) shock.64

LUS is a valuable tool for diagnosing and monitoring a variety of pulmonary and pleural complications after regional anesthesia and interventional pain procedures. Pneumothorax54 has been reported as a potential complication of regional anesthesia procedures such as interscalene66 and supraclavicular66 brachial plexus block, erector spinae plane block,67 thoracic paravertebral block68 and pain procedures such as trigger point injection,69 intercostal nerve block,70 thoracic facet joint injection, radio-frequency lesioning71 and celiac plexus block.72 Respiratory symptoms may develop within minutes following these procedures but more commonly develop over several hours. Hemidiaphragmatic paresis is a known complication of above the clavicle brachial plexus blocks (interscalene and supraclavicular) due to a secondary phrenic nerve block.59 73 LUS can be used to help determine pre/post block diaphragmatic function, monitor the return of diaphragmatic function and differentiate between a block complication versus another potential cause of respiratory insufficiency. Also, pleural effusion and hemorhorax have been described after supraclavicular block74 and thoracic epidural75 and during interscalene brachial plexus infusion.76 77 Diagnostic LUS can also guide management in acute respiratory failure,78 circulatory shock and cardiac arrest states,79 interstitial syndrome,80 lung consolidation,81 acute decompensated heart failure81 and endobronchial intubation.40 82

FAST examination

The FAST is a well-validated POCUS examination with broad applications in the fields of regional anesthesiology and chronic pain medicine.83 See figure 3 for the four FAST views—subcostal, right upper quadrant, left upper quadrant (LUQ) and pelvic views.

Initially, the FAST examination was intended to rapidly identify trauma patients who need surgical intervention.82 In the perioperative setting, the indications are an ongoing assessment of trauma patients, critical patients recovering postoperatively, hip arthroscopy patients with severe postoperative pain or showing signs of hemodynamical instability, patients with ascites, patients with peritoneal dialysis and patients following any abdominal surgery.14 84 Additionally, there is a role in gynecologic and obstetrics procedures in the form of...
the focused assessment with sonography for obstetrics examination. A positive examination indicates that the patient has at least 300–500 mL of free fluid in the peritoneal space.

This amount of fluid following abdominal surgery is rarely increased pain. In 15% of hip arthroscopy cases and is highly associated with ileus. Intra-abdominal fluid extravasation (IAFE) following hip arthroscopy. IAFE occurs in up to 10% of patients and is associated with increased pain. Radiofrequency ablation, or pneumothorax with intercostal administration of brain stem injection with trigeminal nerve block or radiofrequency ablation, or pneumothorax with intercostal, or paravertebral nerve blocks. Additional, deep sedation can be crucial for interventions where patient movement during the procedure may lead to devastating complications, including, for example, inadvertent administration of brain stem injection with trigeminal nerve block or radiofrequency ablation, or pneumothorax with intercostal, or paravertebral nerve blocks.

The ASA’s recommendations for nil per os (NPO) status are routinely observed in anesthesia and pain medicine practice. However, the guidelines are for healthy patients undergoing elective procedures and does not apply to the many complex patients receiving anesthesia or sedation. Opioid dependency, labor, diabetic gastroparesis, advanced renal or liver dysfunction, neuromuscular disorders, ileus, trauma or urgent surgery may prolong gastric emptying, leading to a ‘full stomach’ despite prolonged periods of fasting. Morbidly obese, pregnant and pediatric patients may also be at increased risk of aspiration. Additionally, the prandial status may be difficult to assess in patients with a language barrier, altered cognition (such as delirium or dementia) and inconsistent clinical history.

Gastric ultrasound

Gastric POCUS is used to evaluate stomach contents as they relate to aspiration risk. Pulmonary aspiration of gastric contents has significant perioperative morbidity and mortality. Regional anesthesia and pain management procedures are commonly performed under various degrees of sedation. Chronic pain patients frequently require sedation because of increased sensitivity to needle, opioid-induced hyperalgesia and anxiety. Additionally, deep sedation can be crucial for interventions where patient movement during the procedure may lead to devastating complications, including, for example, inadvertent administration of brain stem injection with trigeminal nerve block or radiofrequency ablation, or pneumothorax with intercostal, or paravertebral nerve blocks.

Table 2 Examples of cases in airway POCUS following an I-AIM Framework

<table>
<thead>
<tr>
<th>Clinical scenario</th>
<th>Indications</th>
<th>Image acquisition</th>
<th>Image interpretation</th>
<th>Medical decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awake cricothyroidotomy</td>
<td>Location of the cricothyroid membrane</td>
<td>Patient supine with the neck extended</td>
<td>Localization of cephalocaudal level, mid-point and size of the cricothyroid membrane</td>
<td>Determine and mark the skin for the correct location of cricoid force (pressure)</td>
</tr>
<tr>
<td></td>
<td>Location of the cricoid cartilage</td>
<td>Linear high-frequency transducer</td>
<td>Localization of the cephalocaudal level and mid-point of the cricoid cartilage</td>
<td>Determine and mark the skin for the correct location of cricoid force (pressure)</td>
</tr>
<tr>
<td></td>
<td>Location of tracheal rings</td>
<td>Scan in transverse and sagittal planes</td>
<td>Localization of the cephalocaudal level, mid-point and number of tracheal rings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify: Thyroid cartilage, Cricothyroid membrane, Cricoid cartilage, Tracheal rings, Thyroid gland, Surrounding vasculature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmation of correct endotracheal tube placement</td>
<td>Unclear endotracheal intubation</td>
<td>Patient supine</td>
<td>Verification of endotracheal tube position (double-bullet sign)</td>
<td>Determine the safety of utilization of a tracheal tube for ventilation</td>
</tr>
<tr>
<td></td>
<td>Real-time confirmation of endotracheal intubation</td>
<td>Linear high-frequency transducer</td>
<td>Diagnosis of endobronchial intubation (double-bullet sign and unilateral lung sliding (left))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rule out esophageal intubation</td>
<td>Scan in transverse and sagittal planes</td>
<td>Verification of esophageal position (double-tract sign)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify: Tracheal rings, Esophagus, Thyroid gland, Surrounding vasculature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bilateral lung sliding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmation of orogastric or nasogastric tube placement</td>
<td>Oрогastric or nasogastric tube placement without aspiration of gastric content by suction</td>
<td>Patient supine</td>
<td>Verification of small, round structure in esophagus or stomach</td>
<td>Determine the safety of use of orogastric or nasogastric tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear high-frequency transducer, potentially curvilinear probe for verification of orogastric or nasogastric tube in the stomach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scan in transverse and sagittal planes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify: Tracheal rings, Esophagus, Thyroid gland, Surrounding vasculature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I-AIM, Indication, Acquisition, Interpretation, and Medical decision-making; POCUS, Point-of-care ultrasound.
Therefore, gastric US should be considered before sedation to verify gastric content for patients with these conditions or when fasting status is unclear.

Gastric POCUS is most useful when there is clinical uncertainty regarding the status of stomach contents, in other words, when the pretest probability of a ‘full stomach’ is close to 50%. In a prospective study with a simulated clinical scenario with a pretest probability of ‘full stomach’ of 50%, a positive gastric ultrasound examination increased the post-test probability of a full stomach to over 95%, and a negative test decreased the post-test probability to 0.1%. Additionally, bedside gastric ultrasound has been shown to change anesthetic management in two-thirds of patients who have not followed fasting instructions before elective surgery and in pediatric patients undergoing urgent surgery. Gastric ultrasound has been studied in adult, pediatric, obstetric and morbidly obese patients.

A systematic assessment of the gastric antrum provides information about the entire organ’s contents (figure 4). Based on qualitative and quantitative findings, the results of a gastric ultrasound examination may be summarized in a binary manner as an ‘empty’ or a ‘full’ stomach. An ‘empty’ stomach has no appreciable content or there is a low volume (<1.5 mL/kg) of hypoechoic fluid consistent with baseline gastric secretions. A ‘full’ or ‘not empty’ stomach has evidence of solid particulate content (mixed echogenicity), thick (hyperechoic) fluid or a volume of clear fluid in excess of normal baseline gastric secretions (>1.5 mL/kg). Patient position affects antral size as the stomach’s contents pool in the most dependent areas. A more accurate evaluation of the antrum and gastric content is obtained in the right lateral decubitus (RLD) or the semirecumbent position with the head elevated at 45°, as the supine position can underestimate gastric content.
Given these positional differences, a semi-quantitative three-point grading system can be used to assess the presence or absence of clear fluid in the supine and/or RLD positions. In a grade 0 antrum (empty stomach), fluid is absent in both positions. A grade 1 antrum only has visible fluid in the RLD position, consistent with baseline gastric secretions. Grade 0 and 1 antrums are commonly seen in the fasting state. Alternatively, a grade 2 antrum appears distended with clear fluid in both the supine and RLD positions, and it correlates with gastric volumes >100 mL. A grade 2 antrum is uncommonly seen in the fasting state. Gastric ultrasound has been shown to be reliable and accurate to identify a ‘full stomach’. Quantification of gastric antrum volume has been validated against endoscopically guided gastric suctioning for a wide range of gastric volumes (0–500 mL), patient’s body mass index (19–60) and ages (18–85 years). By placing the patient in the RLD position and measuring the cross-sectional area (CSA) of the gastric antrum at the level of the aorta, the following statistical model can be used to measure gastric volume. Gastric volume (mL) = 27.0 + 14.6 × RLD CSA − 1.28 × age. This statistically robust model has the benefit of only one covariate (age) and has been shown to have high intrarater and inter-rater reliability.

Focused cardiac ultrasound

FoCUS has been used in critical care for over 25 years, with the earliest example being the focus assessed transthoracic echocardiography (FATE) protocol. While echocardiography was, for decades, the exclusive domain of the cardiologist, those days have passed. Both the American Society of Echocardiography and the World Interactive Network Focused on Critical Ultrasound have published recommendations for the utility of FoCUS at the bedside for specific clinical indications. With the availability of high-quality, hand-carried devices, as well as the expansion of training and expertise, the perioperative setting has been ushered into a new era of bedside ultrasound. Specifically, this evidence has been supplemented by several review articles describing the value of FoCUS in the broad practice of anesthesiology, regional anesthesia and pain medicine. Although there are no controlled studies on the utilization of FoCUS in pain practice at this time, there are several scenarios where it could be clinically relevant.

FoCUS aids with patient assessment and clinical optimization, and it can help guide the management of procedural complications. Patients presenting urgently or emergently in the perioperative or periprocedural setting can have undiagnosed and potentially significant cardiac comorbidities. FoCUS can be used to screen high-risk patient populations for undiagnosed cardiac disease when formal echocardiography is not promptly available. One clinical example is the elderly patient presenting with a hip fracture. In a prospective study, hip fracture patients who received routine bedside cardiac ultrasound screening found that 31% of patients with no audible murmur had aortic stenosis (AS). Diagnosis of significant pathologies, such as AS, should alter anesthetic technique, monitoring and postoperative care. Additionally, bedside cardiac ultrasound on high-risk hip fracture patients did not delay entry into the operating room and may have improved short-term and long-term mortality.

FoCUS can differentiate among intraoperative and periprocedural complications. In the setting of refractory hypotension following a procedure, FoCUS can differentiate among decreased preload seen with a high spinal, poor contractility related to LAST to the myocardium and other complications associated...
with more complex cardiac pathologies (e.g., myocardial infarction (MI), PE, undiagnosed pericardial effusion). FoCUS can also provide repeated evaluation of volume status and ventricular function, which is often not logistically feasible with formal echocardiography; additionally, FoCUS may prompt further testing or consultation. For example, although FoCUS has a low sensitivity for PE, when there is a high level of clinical suspicion and visualization of a dilated right ventricle (RV), it might lead to a more urgent pursuit of definitive imaging like CT angiography (CTA). Similarly, while FoCUS should not be used to detect wall motion abnormalities, global left ventricle (LV) systolic dysfunction in a patient with ECG changes and other supportive symptoms may prompt more rapid cardiology consultation. Of note, negative findings with FoCUS in a clinical situation suspicious for the above pathologies should not discourage pursuing more conclusive investigations, such as ordering advanced imaging, for example, CTA or a complete transthoracic echocardiogram.

There are several clinical scenarios where the utilization of FoCUS can be considered for the chronic pain or interventional pain physician. Radiographic contrast is routinely used in interventional pain management to help detect an intravascular spread of the injectate. While adverse reactions are rare, they can be life-threatening. Therefore, pain physicians should be equipped with tools allowing timely management of an anaphylactic reaction or other complications. FoCUS can be potentially used to treat other rare complications of pain management procedures, including hypotension after sympathetic blocks or respiratory and cardiovascular collapse resulting from brainstem anesthesia after trigeminal blocks.

Cardiac arrest
FoCUS is emerging as an important tool to assist with diagnosing and managing patients in cardiac arrest. FoCUS plays a role in the asystole and pulseless electrical activity (PEA) pathway in the advanced cardiac life support (ACLS) algorithm. FoCUS can help diagnose treatable pathologies such as hypovolemia, PE, LV failure and pericardial tamponade. FoCUS can also provide insight into prognosis and survivability based on the presence or absence of LV wall motion. The focused echocardiographic evaluation in life support protocol describes the optimal timing and FoCUS views to assist in diagnosis and management during ACLS while avoiding interference with other essential treatments.

FoCUS views
The fundamental FoCUS views are the parasternal long axis, parasternal short axis, apical four-chamber, subcostal four-chamber and the subcostal-inferior vena cava view. These views are sufficient to obtain the qualitative information needed to diagnose gross and potentially life-threatening pathology. This article will not detail view acquisition as there are multiple resources available in publications and online. However,
Special article

Figure 5 Gastric ultrasound sonoanatomy. (A) Sonographic appearance of the antrum in an empty stomach. (B) Appearance with clear fluid. (C) Appearance soon after a solid meal (early stage solid) with significant air content. (D) Appearance with mixed solid and fluid content (late stage solid). A, antrum; Ao, aorta; L, liver.

Figure 6 highlights the basic views as initially described with the FATE protocol.

Relevant pathology

FoCUS can identify specific gross pathologies, and the following section will highlight some of the most pertinent pathologies for regional anesthesiologists and pain medicine physicians. Before implementing a new clinical skill, it is essential to understand the indications and subsequent steps required to practice this skill both safely and correctly. The I-AIM Framework is a standardized, step-by-step guide for clinicians learning a new POCUS skill to identify the appropriate clinical scenarios where it can be used.48 49

Table 4 has a summary of each cardiac pathology using the I-AIM Framework.

Local anesthetic systemic toxicity

Although LAST is a rare complication for regional anesthesiologists and pain specialists, it is one of the most critical complications to assess and manage appropriately. LAST resulting from peripheral nerve blocks or neuraxial anesthesia can be devastating, causing severe ventricular arrhythmias, myocardial depression and cardiovascular collapse. There is a complex algorithm for the assessment and management of LAST,137 which is particularly relevant when LAST is detected immediately following local anesthetic injection. However, FoCUS can be essential with a delayed presentation of LAST, which can mimic other cardiac pathologies such as MI138 and cardiogenic shock.139 For example, in an otherwise healthy patient presenting with delayed hemodynamic instability following either neuraxial or peripheral nerve block, FoCUS can reveal new-onset myocardial dysfunction suggesting LAST.

Aortic stenosis

AS is often of concern for a patient presenting for urgent or emergent surgery (for example, hip fracture surgery) without a recent medical workup and an audible systolic murmur on auscultation. Hip fracture patients can benefit significantly from neuraxial technique depending on their comorbidities; however, a patient with severe AS is at risk for significant hemodynamic changes and potential complications following induction with neuraxial technique. Although the definitive diagnosis and grading of valvular AS require advanced technical skill and knowledge, FoCUS can be used to detect morphologic signs that suggest AS and prompt additional diagnostic imaging as well as changes in management.118 119 125 140

Hypovolemia

Assessment for hypovolemia before a neuraxial blockade can add considerable value and help guide management. For example, a trauma patient presenting for emergent surgery with an occult bleed or a patient with end-stage renal disease who has recently undergone dialysis may have inadequate preload at baseline, resulting in significant hemodynamic changes and potential cardiac arrest following induction with neuraxial technique. Alternatively, hypovolemia may result from low vascular resistance and reduced afterload, as seen in pathologies such as sepsis or septic shock.
Special article

A. Probe Position

Pos 1: Subcostal 4-C

Pos 2: Apical 4-C

Pos 3: PS LAX

Pos 3: PS SAX

Position 1: Subcostal IVC

B. Modified FATE Card

Focus Assessed Transthoracic Echo (FATE)

Scan position 1–3 in the most favorable sequence

Figure 6 Probe placement for a focus cardiac ultrasound examination and modified basic FATE card to include subcostal IVC view. (A) Probe placement for each FATE view with arrow demonstrating orientation marker direction. (B) Modified basic FATE card with IVC view. 4-C, four-chamber; Ao, ascending aorta; IVC, inferior vena cava view; L, left; LA, left atrium; LV, left ventricle; R, right; RA, right atrium; RV, right ventricle; PS LAX, parasternal long axis, PS SAX, parasternal short axis.

Pulmonary embolism

PE is a relatively common complication following orthopedic procedures (~1.7%) and is a significant cause of death following trauma surgery (~1.6%). Regional anesthesiologists routinely manage patients at risk for this complication, and it should be high on our differential diagnosis in the perioperative setting of hemodynamic instability and cardiovascular collapse. PE is a time-sensitive emergency that requires a rapid diagnosis to ensure adequate intervention and management. Although FoCUS has a low sensitivity for PE, it has been shown to have high specificity in the setting of massive PE, particularly in patients without any known preexisting cardiovascular disease. Occlusion of the pulmonary vasculature, as seen with massive PE, causes an acute elevation in RV pressure resulting in RV dilation and failure. Although emboli are not always visible, multiple FoCUS findings significantly increase suspicion for PE and should direct further evaluation and/or management.

Summary of clinical indications

Based on the evidence presented, there are multiple clinical applications for POCUS; however, to provide additional examples to guide training, this group has provided several educational case-based clinical scenarios (online supplemental file 1 part I—Case-Based Clinical Scenarios) for review that can be implemented into a training program.

Pediatric POCUS

POCUS is becoming an essential tool for diagnostic and procedural purposes in pediatric acute care medicine, similar to its use in adult populations. Evidence documents the benefits of gastric, cardiac, airway and lung ultrasound use in children. While there are many similarities between POCUS imaging for adults and children, the differing size, physiology, common injury patterns and distribution of comorbidities in children create aspects of POCUS that are unique to pediatric patients.

When considering the various categories of the I-AIM model, most of the technical aspects of image acquisition are quite similar between children and adults. In general, smaller footprint, higher frequency transducers are used on children, and the depth and focus settings need to be adjusted to size. Otherwise, the views are acquired through the same windows with similar transducer orientations. Obtaining intraoperative images can be easier given that there is a shorter distance to the target structures. However, when infants and children are draped and positioned for surgery, their smaller size limits access to sonographic windows. Indications, interpretation and directed medical management differ due to the pathophysiologic characteristics of pediatric patients. The following sections summarize the distinct aspects of POCUS applications in children to supplement the didactic information already included in the previous sections.
Airway and LUS
Infants and children have an increased risk of endobronchial intubation due to relatively short tracheal length.157 The ASA Closed Claims Project shows that bronchial intubations account for 4\% of respiratory claims in children compared with 2\% in adults.158 Point-of-care LUS correctly identifies endobronchial intubation in 95\%–100\% of children.153, 159, 160 Diagnosis of an interstitial syndrome and pneumothorax is similar to adult data. The proportionally large head, small mouth opening, bigger tongue and anterior position of the larynx in infants165 predisposes them to accidental esophageal intubation, which occurs in up to 21\% of infants.167 Those patients with esophageal intubation have a 4\% incidence of hypotension and a 3\% incidence of initiation of chest compression.164 Real-time tracheal ultrasound imaging using a high-frequency linear transducer placed transversely just above the sternal notch has a sensitivity and specificity of 98.5\%–100\% and 75\%–100\%, respectively, for correctly diagnosing esophageal intubation.153, 159, 160 Airway ultrasound has the potential to eliminate the need for test ventilation and speed the diagnosis of esophageal intubation.

Abdominal ultrasound
In response to hypovolemia, children have greater hemodynamic compensatory mechanisms to maintain blood pressure until 40\% of the blood volume is lost, making a timely diagnosis of intra-abdominal bleeding via abdominal ultrasound advantageous.162–164 The smaller caliber of Foley catheters makes kinking and plugging common, and ultrasound of the bladder can help to differentiate causes of anuria.

Gastric ultrasound
The gastric volume is measured in pediatric patients in mL/kg with a volume greater than 1.5 mL/kg suggesting greater than baseline secretions.167 Children may not understand the importance of remaining NPO and may violate NPO guidelines when not directly observed. Comorbidities placing them at risk for delayed gastric emptying are short gut syndrome and pyloric stenosis. In infants presenting for a repair of pyloric stenosis, pre gastric and post gastric suctioning imaging can be used to direct the anesthetic induction technique.150 Gastric imaging is ideally performed pre induction, but children may not cooperate, making imaging difficult. Clinical applications of gastric ultrasound imaging in children are sparse.161, 150

Focused cardiac ultrasound
Given the prevalence of congenital heart disease in children, it is important to realize that bedside cardiac ultrasound has very limited applications in children with congenital heart disease and should not be used to delineate structural abnormalities.118, 147, 166 Ultrasound imaging of the heart adds important information to the physical examination in children and is most commonly indicated in the setting of undifferentiated hypotension or tachycardia.167, 148, 166, 167 The use of cardiac ultrasound in the setting of pediatric cardiac arrest is distinct from adult

Table 4 FoCUS I-AIM framework for the regional anesthesiologist

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Clinical indication</th>
<th>FoCUS view(s)</th>
<th>Interpretation</th>
<th>Medical decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local anesthetic systemic toxicity (LAST)</td>
<td>Delayed onset of hemodynamic instability following neuraxial or PNB in a patient with no known cardiac disease (‘arrhythmias)</td>
<td>PSAX, Alternative Acceptable Views: PLAX, A4C, SC4C</td>
<td>PLAX and PSAX at level of AV*</td>
<td>Provide hemodynamic support (inotropes or vasopressors) Follow LAST guidelines, including the use of lipid emulsion</td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>Urgent or emergent surgery (eg, hip fracture surgery) with inadequate medical workup and an audible systolic murmur on auscultation</td>
<td>PSAX at the level of AV*</td>
<td>PLAX and PSAX at level of AV*</td>
<td>Urgent Case Formal TTE and cardiology consultation Emergent case Adjust perioperative management:→arterial line, maintain hemodynamics with vasopressors/inotropes throughout induction, escalate postoperative care to stepdown or ICU</td>
</tr>
<tr>
<td>Hypovolemia</td>
<td>Urgent or emergent surgery with concern for hypovolemia (eg, trauma patient or ESRD following dialysis)</td>
<td>SCIVC, PSAX</td>
<td>IVC diameter<1.5 cm, >50% collapse with ‘kissing wall sign’</td>
<td>Fluid resuscitation prior to induction Consider gradual induction with epidural over a subarachnoid block</td>
</tr>
<tr>
<td>Pulmonary embolism (PE)</td>
<td>Suspected massive PE in high-risk patient population (eg, orthopedics or trauma patient)</td>
<td>PSAX, A4C or SC4C</td>
<td>PSAX, D-shaped septal shift, RV>LV A4C or SC4C RV and RA dilation>LV Intraventricular septal bowing toward LV during systole</td>
<td>Cardiopulmonary resuscitation when necessary Initiate thrombolytic therapy and/or embolectomy</td>
</tr>
</tbody>
</table>

*Advanced view not discussed in the recommendations.

A4C, apical four-chamber view; AV, aortic valve; ESRD, end-stage renal disease; FoCUS, focused cardiac ultrasound; I-AIM, Indication, Acquisition, Interpretation, and Medical Decision-Making Framework; ICU, intensive care unit; IVC, inferior vena cava view; LAST, local anesthetic systemic toxicity; LV, left ventricle; PLAX, parasternal long axis view; PNB, peripheral nerve block; PSAX, parasternal short axis view; RA, right atrium; RV, right ventricle; SC4C, subcostal four-chamber view; SCIVC, subcostal inferior vena cava view; TTE, transthoracic echocardiogram.
practice. While insufficient evidence exists to recommend for or against the routine use of FoCUS during pediatric cardio-pulmonary resuscitation (CPR), the 2010 International Pediatric Basic and Advanced Life Support guidelines recommend that ‘bedside cardiac echocardiography may be considered to identify potentially treatable causes of a cardiac arrest when appropriately skilled personnel are available, but the benefits must be carefully weighed against the known deleterious consequences of interrupting chest compression’.\(^\text{168}\) Ultrasound can be used to identify reversible causes of cardiac arrest, including cardiac tamponade, severe hypovolemia and pulmonary air embolus.\(^\text{126, 169–172}\)

The diagnosis of cardiac standstill or PEA in children carries a different prognosis and algorithmic sequence compared with adults. Forty per cent of intraoperative cardiac arrests in children occur from a respiratory etiology, and restoration of oxygen delivery alone may lead to a return of spontaneous circulation.\(^\text{173}\) Extracorporeal membrane oxygenation for cardiac resuscitation (E-CPR) as a rescue strategy in children in cardiac arrest is not uncommon.\(^\text{174}\) There is evidence that E-CPR for pediatric patients with in-hospital arrest requiring >10 min of standard CPR is associated with improved survival and neurologic outcomes. There is also evidence that prolonged conventional CPR with ongoing use of epinephrine every 3–5 min (as recommended by pediatric advanced life support protocol) and resultant elevated systemic vascular resistance may have deleterious effects when implementing E-CPR by limiting extracorporeal membrane oxygenation pump flows.\(^\text{175}\) More rapid determination of myocardial standstill using cardiac ultrasound may facilitate more rapid progression to E-CPR with improvement in outcomes.

Handheld devices in POCUS applications

Increasingly portable ultrasound machines have led to an exponential uptake in utilization and discussion in the literature\(^\text{176}\) with some devices priced for individual purchase.\(^\text{177, 178}\) Traditional ultrasound machines have many barriers to use, including size, cost and difficulty to operate. Therefore, handheld devices can be an introductory device before becoming competent in advanced ultrasound applications.\(^\text{179}\) For example, the introduction of handheld ultrasound devices in medical schools aids with teaching functional anatomy and with implementing a clinical

Figure 7 Various images obtained from a range of portable handheld devices. (A) Apical four-chamber view with auto-ejection fraction calculation. (B) LUS—upper zone view demonstrating anatomy and pathology. (C) Right lung base/right upper quadrant view showing cirrhotic liver, ascites and parapneumonic fluid. (D) Right upper quadrant abdominal scan with lung base view, demonstrating metastatic cancer in liver with pleural effusion. (E) Parasternal long axis of the heart, demonstrating calculation of fractional area change. EF, ejection fraction; LUS, lung ultrasound; LVDd, left ventricular end-diastolic diameter; LVDFS, left ventricular dimension fraction shortening; LVDs, left ventricular end-systolic diameter.
POCUS is an essential skill for all regional anesthesiologists and pain physicians to help diagnose relevant complications related to routine practice and guide perioperative management. The growing evidence supporting the clinical utility of POCUS has been outlined to lay the foundation for part II of the recommendations. Part II will provide structured guidelines and strategies for the education of the trainee and postgraduate learner.

The expert panel acknowledges that clinical evidence supporting POCUS is evolving, and certain endpoints, such as improved survival during CPR, require additional validation. All interventions have risks or downsides, including potential false-negative findings, higher rates of interventions or delayed bedside management due to the performance of an examination. Because of these concerns, adequate training and future investigation into applications are essential for the adaptation of POCUS into the perioperative and periprocedural setting.

Regarding POCUS skills that fall outside of the traditional scope of regional anesthesiologists and pain specialists, such as the FAST examination, the expert panel emphasizes learning to perform these skills as well. As these skills are introduced into new clinical practice realms, there is great potential to illuminate novel clinical scenarios in the perioperative and periprocedural setting that can aid in patient assessment and management.

SUMMARY

POCUS is an essential skill for all regional anesthesiologists and pain physicians to help diagnose relevant complications related to routine practice and guide perioperative management. The growing evidence supporting the clinical utility of POCUS has been outlined to lay the foundation for part II of the recommendations. Part II will provide structured guidelines and strategies for the education of the trainee and postgraduate learner.

The expert panel acknowledges that clinical evidence supporting POCUS is evolving, and certain endpoints, such as improved survival during CPR, require additional validation. All interventions have risks or downsides, including potential false-negative findings, higher rates of interventions or delayed bedside management due to the performance of an examination. Because of these concerns, adequate training and future investigation into applications are essential for the adaptation of POCUS into the perioperative and periprocedural setting.

Regarding POCUS skills that fall outside of the traditional scope of regional anesthesiologists and pain specialists, such as the FAST examination, the expert panel emphasizes learning to perform these skills as well. As these skills are introduced into new clinical practice realms, there is great potential to illuminate novel clinical scenarios in the perioperative and periprocedural setting that can aid in patient assessment and management.

Author affiliations

1. Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York, USA
2. Anesthesiology, Weill Cornell Medical College, New York, New York, USA
3. Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
4. Anesthesiology and Pain Management, Toronto Western Hospital, Toronto, Ontario, Canada
5. Anesthesia, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
6. Anesthesiology, University of Utah Health, Salt Lake City, Utah, USA
7. Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts, USA
8. Anesthesiology, McMaster University, Hamilton, Ontario, Canada
9. Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
10. Anesthesiology, University of Texas Health Science Center at Houston, Houston, Texas, USA
11. Anesthesiology, Stanford Hospital and Clinics, Stanford, California, USA
12. Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA
13. Anesthesia, Belfast Health and Social Care Trust, Belfast, UK
14. Intensive Care and Anaesthesia, Northampton General Hospital, Northampton, UK
15. Anesthesiology, UAB, Birmingham, Alabama, USA
16. Anesthesiology, Loma Linda University Medical Center, Loma Linda, California, USA
17. Anesthesiology, Clement Zablocki VA Medical Center/Medical College of Wisconsin, Milwaukee, Wisconsin, USA
18. Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
19. Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA

Twitter

Stephen C Haskins @shaskinsMD, Anahi Perlas @PerlasAnahi, Kariem El-Boghdadly @elboghdadly, Jan Bosbliek @janbosbliek MD PhD, Harihara Shankar @ haliharshankar and Samer Narouze @NarouzeMD

Acknowledgements

The authors would like to thank the American Society of Regional Anesthesia and Pain Medicine’s (ASRA) Guidelines Committee and Board of Directors for their feedback and support in the design of the recommendations. The authors would also like to thank Professor Erik Sloth, MD, PhD, for his ongoing inspiration as well as permission to present an adaptation of the focus assessed transthoracic echo card.

Contributors

All authors are responsible for the content and have read and approved the manuscript for submission to the American Society of Regional Anesthesia and Pain Medicine.
REFERENCES

17 Quien MM, Saric M. Ultrasound imaging artifacts: how to recognize them and how to avoid them. Echocardiography 2018;35:1388–401.

Special article

121 Ramsingh D, Bronstein YS, Haskins S. Perioperative point-of-care ultrasound: from concept to application. *Anesthesiology. Published online on* 2020.

