its control. Our aim is to review the anaesthetic strategy and postoperative pain in patients undergoing this surgery.

**Methods**

Our retrospective observational descriptive study reviewed the anaesthetic techniques and postoperative pain control (NPRS at rest and at movement) in 5 patients undergoing total scapulectomy and reconstruction with scapular prosthesis between 2014-2022 at our hospital. Ethics committee approval was requested (IIBSP-ARC-2023-71). Quantitative variables are presented as median (range).

**Results**

All patients received a continuous interscalene block (CIB) (table 1). Three patients received another associated technique: single-shot paravertebral block (CIB+PVB)(n=1), paravertebral with catheter (CIB+ CPVB)(n=1) or superficial cervical plexus block (CIB+ SCB)(n=1). Surgical time was 4h (3-5), bleeding around 1L (0.5-1.5). All presented mild postoperative pain at rest (NPRS<3), except one patient (CIB +PVB) who presented severe pain (NPRS=9) due to failed CIB. When moving, all patients presented moderate pain (NPRS 6-8) requiring opioid rescue, except the patient with CIB+CPVB, who registered NPRS 1 at movement and NPRS 0 at rest. Morphine rescues were higher in patients with isolated CIB. Interscalene and paravertebral catheter were removed after 4 (2-7) and 7 days, respectively. Four patients needed blood transfusion. The ICU stay was 1 day (1-3) and hospital LOS 8 days (8-11).

### Abstract #35917 Table 1

<table>
<thead>
<tr>
<th>Block</th>
<th>Intravascular</th>
<th>Pneumothorax</th>
<th>NPRS at rest</th>
<th>NPRS at movement</th>
<th>ICU stay (days)</th>
<th>48h (cm) inflated</th>
<th>Caudal catheter (days)</th>
<th>Blood transfusion</th>
<th>I:reex catheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>CIB + PVB</td>
<td>5</td>
<td>1.5</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Patient 2</td>
<td>CIB + CPVB</td>
<td>2</td>
<td>1.5</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>1 passed red blood cells</td>
</tr>
<tr>
<td>Patient 3</td>
<td>CIB</td>
<td>3</td>
<td>0.5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1 passed red blood cells</td>
</tr>
<tr>
<td>Patient 4</td>
<td>CIB + SCB</td>
<td>3</td>
<td>0.5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1 passed red blood cells</td>
</tr>
<tr>
<td>Patient 5</td>
<td>CIB</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1 passed red blood cells</td>
</tr>
</tbody>
</table>

**Conclusions**

CIB associated to CPVB achieve the best analgesic results at rest and movement. Catheter placement entails greater technical difficulty for the benefit of better analgesic quality in the perioperative period, compared to isolated CIB, without increasing hospitalization days or postoperative complications.

**Attachment**

Supporting ethics committee.pdf

---

**Abstract #35846**

**Figure 1** (a). A pubic ramus was identified between the iliopectineal eminence and the anterior inferior iliac spine, and a catheter was mounted between the pubic ramus and psoas tendon. Figure 1(b). 20 ml of 0.375% ropivacaine was injected between the psoas tendon and the pubic ramus. Fluid filling is seen between the psoas tendon and the pubic ramus. Figure 1(c). PA image when the hip joint was checked by administering a contrast agent using fluoroscopy. It is observed that the contrast medium is spread along the iliopsoas muscle passing around the hip joint, Fig. 1(d). Lateral image when the hip joint was checked by administering a contrast agent using fluoroscopy. It was confirmed that the iliopsoas muscle running along the anterior side of the hip joint was imaged. FA: Femoral artery, FN: femoral nerve, PT:psoas tendon, AL: anterior inferior iliac spine, LA: local anesthetics, GT: greater trochanter, FH femoral head, Asterisk: contrast media, arrow: catheter

**Figure 2** (a). A pubic ramus was identified between the iliopectineal eminence and the anterior inferior iliac spine, and a catheter was mounted between the pubic ramus and psoas tendon. Fig. 2(b). 0.375% ropивакaine was injected between the psoas tendon and the pubic ramus. As the fluid fills between the psoas tendon and the pubic ramus, it is seen that the intercompartment space expands, Fig. 2(c). PA image when the hip joint was checked by administering a contrast agent using fluoroscopy. It is observed that the contrast medium is spread along the iliopsoas muscle running along the anterior side of the hip joint was imaged. FA: Femoral artery, FN: femoral nerve, PT:psoas tendon, AL: anterior inferior iliac spine, LA: local anesthetics, GT: greater trochanter, FH femoral head, Asterisk: contrast media, arrow: catheter

**Abstract #35846**

**Figure 1**

**Figure 2**

---

**EFFECT AND METHOD OF CONTINUOUS PERICAPSULAR NERVE GROUP BLOCK IN FEMUR FRACTURE PATIENTS UNDERGOING TOTAL HIP ARTHROPLASTY: CASE REPORT**

Younghoon Jung*. Department of Anesthesia and Pain Medicine, pusan national university Hospital, Busan, Korea

10.1136/rapm-2023-ESRA.595
Background and Aims There are several methods for pain control in hip fracture patients. Recently, a percapsular nerve group block was introduced. This block is very effective for pain control in hip fracture patients, and there is a report that it is very effective for pain control after surgery, especially in the case of continuous percapsular nerve group blocks. We would like to discuss a more effective and accurate way to perform the percapsular nerve group block.

Methods Two cases were administered. Both cases were hip fracture patients and ultrasound-guided continuous percapsular nerve group block was performed. We also checked the fluoroscopic image using a contrast medium to recheck how the drug spreads and to confirm the appropriate position of the catheter. Postoperative pain was confirmed by a numerical rating scale, and complications such as motor weakness were also checked.

Results In both cases, low NRS was checked after surgery, and no complications occurred.

Conclusions If it is confirmed that the drug spreads well between the psoas tendon and the pubic ramus and the space between the psoas tendon and the pubic ramus is widened when injecting the drug, it can be considered an effective block.

Results The applied regional technique resulted in an effective and safe analgesia judged by low pain scores and early mobilization.

Conclusions EOI catheters provided efficient pain relief after a pancreatic surgery via bilateral subcostal incision.

Please confirm that an ethics committee approval has been applied for or granted: Yes: I’m uploading the Ethics Committee Approval as a PDF file with this abstract submission

Application for ESRA Abstract Prizes: I don’t wish to apply for the ESRA Prizes

Background and Aims Peripheral nerve blocks rather than systemic analgesia are usually used in older patients with fracture neck femur. In this study, we compared fascia iliaca vs PENG with LFCN block for fracture neck of femur surgery.

Methods Geriatric group of patients of age 70 years or over, ASA 2 & 3 with body weight 50 to 90 Kg were included in our study. Out of 40 patients, 20 were taken alternatively for fascia iliaca (Gr-F) or in PENG with LFCN (Gr-P) group. Drugs mixture for the nerve blocks contained equal volume of 2% Lidocaine in adrenalin and 0.5% bupivacaine (plain) with 10 mg dexamethasone. Ultrasound-guided peripheral nerve block was performed with 40ml for FI block in Gr-F and 30ml ml and 10 ml respectively in Gr-P for PENG and LFCN blocks. VRS was assessed 30 minutes following the nerve block procedure. All patients received CSE with 10 mg Bupivacaine heavy for spinal anesthesia and Inj. dexmedetomidine infusion at 0.5 mcg/kg/hr for sedation as our routine anesthetic technique in the intraoperative period. Pain, hemodynamics, complications, timing of initiation of epidural infusion were studied.

Results Students T test was applied for the analysis. During positioning VRS score at 30min was Gr-P 1.15 (± 0.349), in Gr-F it was 2.2 (± 0.589) (p<0.0256). Per-operative hemodynamic responses were not significantly different (P<0.08). Duration of analgesia in Gr-P was 16.96 (±1.86) hours and in Gr-F it was 2.2 (± 0.589) (p<0.0256). Per-operative hemodynamic responses were not significantly different (P<0.08). Duration of analgesia in Gr-P was 16.96 (±1.86) hours and in Gr-F it was 2.2 (± 0.589) (p<0.0256). Per-operative hemodynamic responses were not significantly different (P<0.08). Duration of analgesia in Gr-P was 16.96 (±1.86) hours and in Gr-F it was 2.2 (± 0.589) (p<0.0256). Per-operative hemodynamic responses were not significantly different (P<0.08). Duration of analgesia in Gr-P was 16.96 (±1.86) hours and in Gr-F it was 2.2 (± 0.589) (p<0.0256). Per-operative hemodynamic responses were not significantly different (P<0.08).

Conclusions PENG with LFCN block revealed better analgesic quality during positioning for CSE performance in our study.