performing general anesthesia we should consider use of reversal agents or specific tests.

Conclusions Early hip fracture surgery is safe in patients taking anticoagulant/antiplatelet drugs. Special attention should be paid in perioperative timing when neuraxial anesthesia is performed.

Please confirm that an ethics committee approval has been applied for or granted: Not relevant (see information at the bottom of this page)

Abstract #36517 Table 1 Perioperative management of main antithrombotic drugs in hip fracture surgery

<table>
<thead>
<tr>
<th>ANTITHROMBOTIC</th>
<th>MANAGEMENT</th>
<th>NEURAXIAL ANESTHESIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>Not surgery</td>
<td>With Apixaban 200 mg</td>
</tr>
<tr>
<td>Thrombin</td>
<td>Prevents bleeding, reserve platelets</td>
<td>Neuraxial anesthesia can be performed</td>
</tr>
<tr>
<td>FII/III</td>
<td>Prevents vitamin K</td>
<td>General anesthesia is prepared. If risk of general anesthesia ask for specific platelet test.</td>
</tr>
<tr>
<td>AVX</td>
<td>Reduce INR</td>
<td>General anesthesia can be performed with INR < 1.5</td>
</tr>
<tr>
<td>Degludecin</td>
<td>Check renal function</td>
<td>Consider PCC for rapid reversal</td>
</tr>
<tr>
<td>Anticoagulant</td>
<td>Check renal function</td>
<td>Consider reversal with PCC if risk of general anesthesia</td>
</tr>
</tbody>
</table>

Conclusions Patient-controlled epidural infusion limited postoperative opioids necessities and their associated side effects while providing controlled analgesia in VRAM flap surgeries.

DEXMEDETOMIDINE IN PALLIATIVE CARE

Itok Potocnik*, Institute of Oncology, Ljubljana, Slovenia

Please confirm that an ethics committee approval has been applied for or granted: Yes: I’m uploading the Ethics Committee Approval as a PDF file with this abstract submission

Background and Aims Delirium is common in the terminal patient. It increases discomfort for the patient and relatives. The agents used to treat delirium are various antipsychotics, which are not always effective. Dexmedetomidine intranasal application was effective.

Methods A case report of a palliative patient who developed a severe delirium well treated by the dexmedetomidine.

Results A 42-year-old cancer patient was developed severe delirium. Delirium did not subside with the antipsychotics. Dexmedetomidine intranasal application 1 mcg/kg. The patient became completely calm and his previous neuroleptic and sedation therapy could be withdrawn. In the following days, he reacted sensibly and responded to instructions, his day-night rhythm was restored.

Conclusions Palliative care is becoming an important area of medicine in which also anaesthesiologists participate. With our knowledge and experience, we can contribute a lot to better treatment of pain, as well as other conditions such as delirium and the need for patient sedation. In order to treat patients well, it is important to be familiar with medications and techniques, so it is important to apply our knowledge from operating theatres and ICUs to palliative care. Dexmedetomidine is a potentially useful drug for the targeted treatment of pain and delirium in the tertiary palliative care setting. When used for sedation and delirium treatment, dexmedetomidine fits with the patient’s, family’s and physician’s goals of care when patient alertness and participation in conversations with loved ones and heathcare personnel are important at the end of life.
Background and Aims
Fabry disease is an X-linked disorder caused by mutations in the GLA gene, leading to globotriaosylceramide (Gb3) accumulation on the lysosome. Patients experience numerous forms of pain, including evoked and chronic pain. The exact cause of the pain has yet to be entirely understood. Still, the peripheral nervous system, cardiac, renal, sensory, and autonomic ganglion cells are particularly affected by the deposits of Gb3.

Methods
A bioinformatic analysis of likely genes related to and signaling pathways involved in the manifestation of pain in Fabry disease was performed. A literature review on possible physiopathogenesis of pain mechanisms was also carried out.

Results
In the bioinformatic analysis, we identified through the DisGeNET database around 207 genes related to chronic pain, 266 genes in inflammatory pain, and 24 genes in peripheral neuropathic pain. The Venny 2.1 online platform was used to find common genes between these pathologies, identifying around 78 common genes. An interaction network was built on the STRING platform for these 78 genes. The pathways discovered through this analysis include inflammatory mediator regulation of TRP channels, the VEGF pathway, neuroinflammation, and the relationship between COX2 and EGFR. Among the principal explanations for the physiopathogenesis in the literature, the accumulation of Gb3 in the sacral plexus, the activation of the Notch 1 pathway, and the function of ion channels (KCa3.1 channels) are involved in the mechanism of initiation.

Conclusions
This analysis aims to explain unresolved key pathophysiologic features of pain without discarding the possibility of additional genomics factors and providing future investigation opportunities.

Abstract #35825 Table 1
Common target genes between 'Chronic Pain', 'Inflammatory pain' and 'Neuropathic Pain'.