can lead to the formation of bony outgrowths called osteophytes or bone spurs. Skeletal hyperostosis is rare in young patient.

Methods
We present a case of a 48 year old female patient with chronic pain at the right side of her back for 13 years. The pain (NRS 8-10), affecting her daily life, was constant and extends from the level of T8 until T12 vertebrae. She has consulted many doctors of various specialties and tried numerous pharmacological treatments, with no results. The cause of pain was unknown until a year ago when she was diagnosed with Forestier syndrome. The patient came to our clinic totally disappointed and in unbearable pain. Hence she had tried all available pharmacological treatments, with no results. She was reluctant to receive any drugs.

Results
We decided to perform diagnostic blocks of the medial branch using C-arm guidance. As the blocks were successful we proceeded to radiofrequency ablation of the medial branch in the same levels (80 Co for 3 min). The patient reports improvement (NRS 3) and is very satisfied.

Conclusions
Radiofrequency ablation treatment is a minimally invasive procedure that can be used to manage pain associated with various spinal conditions, including DISH syndrome. In young patients with DISH syndrome, RFA has been found to be a promising treatment.

Abstract #36401 Figure 1 Atrophy of the left trapezius along with reduced strength in the upper and middle trapezius

Abstract #36401 Figure 2 EMG: moderate to severe partial axonotmesis of the left accessory spinal nerve

Abstract #36401 Figure 3 Nerve MRI: extensive neuropathy along the spinal accessory nerve pathway
Methods Physical examination shows atrophy of the left trapezius and sternocleidomastoid muscles, along with reduced strength in the upper and middle trapezius (figure 1). Post-vaccination Parsonage-Turner syndrome or accessory spinal nerve injury is considered. Electromyography reveals moderate to severe partial axonotmesis of the left accessory spinal nerve (figure 2). Magnetic resonance imaging shows extensive neuropathy along the nerve pathway (figure 3). The patient receives conservative treatment with analgesics, corticosteroids, pregabalin, clonazepam, and intensive rehabilitation. Significant improvement in pain and muscular recovery is observed at 6 weeks. Electromyography at 8 weeks demonstrates increased amplitude of the motor evoked potential, indicating progressive and adequate reinervation. In conclusion, accessory spinal nerve injuries are uncommon after mild trauma and are typically associated with oncological surgery. Initial treatment should be conservative, considering surgical options only if conservative treatment fails. Additionally, the use of platelet-rich plasma may hold promise in the treatment of such injuries. Comprehensive physical examination and appropriate ancillary tests are essential for accurate diagnosis and proper management, as pathological imaging does not always explain clinical findings.

Attachment EMG 1.png

Please confirm that an ethics committee approval has been applied for or granted: Not relevant (see information at the bottom of this page)

Background and Aims Developing a multidisciplinary approach for nerve pain treatment involves dosimetry, nanobots, and artificial intelligence (AI). Dosimetry calculates radiation dosage to determine the optimal treatment dose based on patient factors. Nanobots target nerve cells or pain receptors, improving precision. AI analyzes patient-specific data to optimize treatment plans. The aim is to revolutionize nerve pain treatment by leveraging dosimetry, nanobots, and AI. Dosimetry ensures personalized treatment, nanobots target specific cells, and AI optimizes plans.

Methods Methods include patient evaluation, dosimetry planning, nanobot design, treatment administration, AI analysis, and treatment refinement. Patient evaluation considers medical history, imaging, and pain intensity. Dosimetry determines optimal dosage. Nanobots are designed to target cells, administered with imaging guidance. AI analyzes dosimetry, imaging, and nanobot data to optimize treatment. Treatment plans are refined based on AI analysis.

Results Results show promising integration of dosimetry, nanobots, and AI. Dosimetry allows personalized treatment, nanobots enhance precision, and AI optimizes strategies.

Conclusions In conclusion, the multidisciplinary approach of harnessing dosimetry, nanobots, and AI revolutionizes nerve pain treatment. By providing personalized relief through optimized treatment plans, this approach has the potential to significantly improve the quality of life for individuals suffering from nerve pain.