Physical Functioning Following Spinal Cord Stimulation: A Systematic Review and Meta-

Analysis

Supplementary

Table of Content:

S1: Actual Search Strategy

Table S2: Physical Function Questionnaires

Table S3: Newcastle Ottawa Scale; Observational Studies Quality Assessment

Table S4: Included study groups' key for the forest plots.

Figure S5: Funnel Plot for 12-Months ODI Pre \& Post SCS Outcome

Table S6: Included Studies Outcomes and Trends

Figure S7-S9: Forest plot diagrams of baseline ODI scores compared with ODI Scores at 1,3,6, and 24 months.

Figure S10: Forest plot diagrams of baseline SF-36 scores compared with SF-36 Scores at 6 months.

Figure S11: Study Type Subgroup Forest Plot Comparison: ODI Pre \& Post SCS, Outcome: 1.3 ODI 12 Months

Figure S12: Funding Type Subgroup Forest Plot Comparison: ODI Pre \& Post SCS, Outcome:

1.3 ODI 12 Months

Figure S13: Stimulation Type Subgroup Forest plot Comparison: ODI Pre \& Post SCS,
Outcome: 12 Months

S1: Actual Search Strategies

The number of results from each database prior to removing duplicates is:
342 MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review \& Other NonIndexed Citations
369 Embase
215 Cochrane Central Register of Controlled Trials
36 Scopus
962 Total
516 In the Endnote file with duplicates removed.

Ovid
Database(s): EBM Reviews - Cochrane Central Register of Controlled Trials April 2022,
Embase 1974 to 2022 May 27, Ovid $\operatorname{MEDLINE(R)~and~Epub~Ahead~of~Print,~In-Process,~In-~}$
Data-Review \& Other Non-Indexed Citations, Daily and Versions 1946 to May 27, 2022
Search Strategy:
\# Searches Results
1 exp Spinal Cord Stimulation/
10044
(("spinal cord" or spinal or epidural or "dorsal root" or "dorsal columnor DRGS" or
2 DRG) adj3 (stimulat* or electrostimulat* or neuromodulat* or
20597
neurostimulat*)).ti,ab,kf.
31 or 2
22508
4 exp Pain/
1995671
("Alice in Wonderland Syndrome*" or arthralgia* or "back ache*" or backache* or
backpain* or cephalalgia* or cephalea* or cephalgia* or cephalodynia* or
cranialgia* or dorsalgia* or glossalgia* or glossodynia* or glossopyroses or glossopyrosis or "head ache*" or headache* or hemicrania* or lumbago or mammalgia* or mastalgia* or mastodynia* or metatarsalgia* or migraine* or migrainous or "Morton Neuroma*" or Myalgia* or neuralgia* or neurodynia* or pain* or "Piriformis Muscle Syndrome*" or polyarthralgia* or Sciatica* or "status hemicranicus" or "sunct syndrome").ti,ab,kf.
64 or 5
3184063
73 and 6
12725
("Bournemouth Questionnaire" or disability or functional or nODI or ODI or
"Oswestry disability index" or "physical function*" or QBPDS or "Quebec Back
8 Pain Disability" or RMDQ or "Roland-Morris disability" or "SF-36" or "short form-36" or "Waddell Disability Index" or WDI).ti,ab,kf.
97 and $8 \quad 2211$
10 limit 9 to english language 2125
11 limit 9 to no language specified 14
1210 or 11
2139
13 (exp animals/ or exp nonhuman/) not exp humans/
11836635
((alpaca or alpacas or amphibian or amphibians or animal or animals or antelope or
14 armadillo or armadillos or avian or baboon or baboons or beagle or beagles or bee 10114051 or bees or bird or birds or bison or bovine or buffalo or buffaloes or buffalos or "c
elegans" or "Caenorhabditis elegans" or camel or camels or canine or canines or carp or cats or cattle or chick or chicken or chickens or chicks or chimp or chimpanze or chimpanzees or chimps or cow or cows or "D melanogaster" or "dairy calf" or "dairy calves" or deer or dog or dogs or donkey or donkeys or drosophila or "Drosophila melanogaster" or duck or duckling or ducklings or ducks or equid or equids or equine or equines or feline or felines or ferret or ferrets or finch or finches or fish or flatworm or flatworms or fox or foxes or frog or frogs or "fruit flies" or "fruit fly" or "G mellonella" or "Galleria mellonella" or geese or gerbil or gerbils or goat or goats or goose or gorilla or gorillas or hamster or hamsters or hare or hares or heifer or heifers or horse or horses or insect or insects or jellyfish or kangaroo or kangaroos or kitten or kittens or lagomorph or lagomorphs or lamb or lambs or lemur or lemurs or llama or llamas or macaque or macaques or macaw or macaws or marmoset or marmosets or mice or minipig or minipigs or mink or minks or monkey or monkeys or mouse or mule or mules or nematode or nematodes or octopus or octopuses or orangutan or "orang-utan" or orangutans or "orang-utans" or ostrich or ostriches or oxen or parrot or parrots or pig or pigeon or pigeons or piglet or piglets or pigs or porcine or primate or primates or quail or rabbit or rabbits or rat or rats or reptile or reptiles or rodent or rodents or ruminant or ruminants or salmon or sheep or shrimp or slug or slugs or swine or tamarin or tamarins or toad or toads or trout or urchin or urchins or vole or voles or waxworm or waxworms or wildlife or worm or worms or xenopus or "zebra fish" or zebrafish) not (human or humans or patient or patients)).ti,ab,hw,kf.
$1512 \operatorname{not}$ (13 or 14) 2011
16 (case adj3 report).mp,pt. 3374829
1715 not 16
18 review.pt.
1917 not 18
limit 19 to (conference abstract or editorial or erratum or note or addresses or autobiography or bibliography or biography or blogs or comment or dictionary or directory or interactive tutorial or interview or lectures or legal cases or legislation or news or newspaper article or overall or patient education handout or periodical index or portraits or published erratum or video-audio media or webcasts) [Limit not valid in CCTR,Embase,Ovid MEDLINE(R),Ovid MEDLINE(R) Daily Update, Ovid MEDLINE(R) PubMed not MEDLINE,Ovid MEDLINE(R) InProcess,Ovid MEDLINE(R) Publisher, records were retained]
2119 not $20 \quad 926$
22 remove duplicates from 21586

Scopus

1 TITLE-ABS-KEY((("spinal cord" or spinal or epidural or "dorsal root" or "dorsal column"or DRGS or DRG) W/3 (stimulat* or electrostimulat* or neuromodulat* or neurostimulat*)))
2 TITLE-ABS-KEY("Alice in Wonderland Syndrome*" OR arthralgia* OR "back ache*" OR backache* OR backpain* OR cephalalgia* OR cephalea* OR cephalgia* OR cephalodynia* OR cranialgia* OR dorsalgia* OR glossalgia* OR glossodynia* OR
glossopyroses OR glossopyrosis OR "head ache*" OR headache* OR hemicrania* OR lumbago OR mammalgia* OR mastalgia* OR mastodynia* OR metatarsalgia* OR migraine* OR migrainous OR "Morton Neuroma*" OR Myalgia* OR neuralgia* OR neurodynia* OR pain* OR "Piriformis Muscle Syndrome*" OR polyarthralgia* OR Sciatica* OR "status hemicranicus" OR "sunct syndrome")
3 TITLE-ABS-KEY("Bournemouth Questionnaire" OR disability OR functional OR nODI OR ODI OR "Oswestry disability index" OR "physical function*" OR QBPDS OR "Quebec Back Pain Disability" OR RMDQ OR "Roland-Morris disability" OR "SF-36" OR "short form-36" OR "Waddell Disability Index" OR WDI)
4 LANGUAGE(english)
$5 \quad 1$ and 2 and 3 and 4
6 TITLE-ABS-KEY((alpaca OR alpacas OR amphibian OR amphibians OR animal OR animals OR antelope OR armadillo OR armadillos OR avian OR baboon OR baboons OR beagle OR beagles OR bee OR bees OR bird OR birds OR bison OR bovine OR buffalo OR buffaloes OR buffalos OR "c elegans" OR "Caenorhabditis elegans" OR camel OR camels OR canine OR canines OR carp OR cats OR cattle OR chick OR chicken OR chickens OR chicks OR chimp OR chimpanze OR chimpanzees OR chimps OR cow OR cows OR "D melanogaster" OR "dairy calf" OR "dairy calves" OR deer OR dog OR dogs OR donkey OR donkeys OR drosophila OR "Drosophila melanogaster" OR duck OR duckling OR ducklings OR ducks OR equid OR equids OR equine OR equines OR feline OR felines OR ferret OR ferrets OR finch OR finches OR fish OR flatworm OR flatworms OR fox OR foxes OR frog OR frogs OR "fruit flies" OR "fruit fly" OR "G mellonella" OR "Galleria mellonella" OR geese OR gerbil OR gerbils OR goat OR goats OR goose OR gorilla OR gorillas OR hamster OR hamsters OR hare OR hares OR heifer OR heifers OR horse OR horses OR insect OR insects OR jellyfish OR kangaroo OR kangaroos OR kitten OR kittens OR lagomorph OR lagomorphs OR lamb OR lambs OR llama OR llamas OR macaque OR macaques OR macaw OR macaws OR marmoset OR marmosets OR mice OR minipig OR minipigs OR mink OR minks OR monkey OR monkeys OR mouse OR mule OR mules OR nematode OR nematodes OR octopus OR octopuses OR orangutan OR "orang-utan" OR orangutans OR "orang-utans" OR oxen OR parrot OR parrots OR pig OR pigeon OR pigeons OR piglet OR piglets OR pigs OR porcine OR primate OR primates OR quail OR rabbit OR rabbits OR rat OR rats OR reptile OR reptiles OR rodent OR rodents OR ruminant OR ruminants OR salmon OR sheep OR shrimp OR slug OR slugs OR swine OR tamarin OR tamarins OR toad OR toads OR trout OR urchin OR urchins OR vole OR voles OR waxworm OR waxworms OR worm OR worms OR xenopus OR "zebra fish" OR zebrafish) AND NOT (human OR humans or patient or patients))
$7 \quad 5$ and not 6
8 TITLE-ABS-KEY(case W/3 report)
$9 \quad 7$ and not 8
10 DOCTYPE(ab) OR DOCTYPE(ed) OR DOCTYPE(bk) OR DOCTYPE(er) OR
DOCTYPE(no) OR DOCTYPE(sh)
9 and not 10
INDEX(embase) OR INDEX(medline) OR PMID(0* OR 1* OR 2* OR 3* OR 4* OR 5* OR 6* OR 7* OR 8* OR 9*)
$13 \quad 11$ and not 12

Disability Questionnaire	Score Range	Pain considered	Better Function With	MCID	Sensitivity	Specificity
ODI	0-100 (bed- bound)	Yes	Lower Score	12.88^{1}	88%	85%
RMDQ	0-24 (greater disability)	Yes	Lower Score	$3-5$ points 2,3	75%	76%
SF-36 PCS	1 of 8 subscales, $0-100$ (no disability)	Yes	Higher Score	4^{4}	72.2%	68.1%
WHODAS 2.0	0-100\% (full disability)	No	Lower Score	$5 \%^{5}$	NR	NR

Table S2: Physical Function Questionnaires

MCID - minimal clinically important difference; NR - not reported; ODI - Oswestry Disability Index; RMDQ - Roland-Morris Disability Questionnaire; SF-36 PCS - 36 item short form survey Physical Component Summary; WHODAS 2.0 - world health organization disability assessment schedule.

[^0]| Study | Selection | Comparability | Exposure | Total Score |
| :---: | :---: | :---: | :---: | :---: |
| Al-Kaisy 2014 | ** | - | * | 3 |
| Barolat 2001 | ** | - | * | 3 |
| Benyamin 2020 | ** | - | - | 2 |
| Bolash 2022 | ** | - | * | 3 |
| Bondoc 2022 | ** | - | * | 3 |
| Brooker 2021 | ** | - | * | 3 |
| Burchiel 1995 | * | - | * | 2 |
| Campwala 2021 | ** | - | ** | 4 |
| Costantini 2010 | ** | - | ** | 4 |
| De Jaeger 2021 | ** | - | * | 3 |
| Delmotte 2015 | ** | - | - | 2 |
| DiBenedetto 2018 | *** | - | ** | 5 |
| Do 2021 | ** | - | * | 3 |
| Goudman 2021 | ** | - | * | 3 |
| Harman 2020 | ** | - | ** | 4 |
| Jonsson 2020 | ** | - | * | 3 |
| Kallewaard 2021 | ** | - | * | 3 |
| Kamieniak 2019 | *** | - | ** | 5 |
| Kinfe 2014 | *** | - | * | 4 |
| Mehta 2022 | ** | - | * | 3 |
| Mosiewicz 2015 | ** | - | * | 3 |
| Mullins 2022 | ** | - | * | 3 |
| Paul 2017 | ** | - | * | 3 |
| Perez 2021 | *** | - | * | 4 |
| Slavin 1999 | ** | - | - | 2 |
| Spincemaille 2004 | ** | - | * | 3 |
| Van Buyten 2013 | ** | - | * | 3 |
| Van Heteren 2022 | ** | - | ** | 4 |
| Zucco 2015 | ** | - | * | 3 |

The quality of observational studies was determined by the Newcastle-Ottawa scale. It includes three categories: Selection (Maximum of 4 stars), Comparability (Maximum of 2 starts), and outcome (Maximum of 3 stars). "*" signify star point for a given category. "-" signify no awarded stars in each category. Total score is the sum of stars across all three categories.

Table S4: Included study groups' key for the forest plots:

- Al-Kaisy 2022
- Al-Kaisy 2022: Group 1: Anatomic placement group
- Al-Kaisy 2022 Group 2: Paresthesia mapping group
- Campwala 2021
- Campwala 2021 Group 1: SCS for patients with no previous spine surgery
- Campwala 2021 Group 2: SCS with history of previous spine surgery
- De Andres 2017
- De Andres 2017 Group 1: Conventional frequency
- De Andres 2017 Group 2: HF
- Paul 2017
- Paul 2017 Group 1: Success
- Paul 2017 Group 2: Failure
- Van Heteren 2022
- Van Heteren 2022 Group 1: SCS
- Van Heteren 2022 Group 2: SCS + PNFS

Figure S5: Funnel Plot for 12-Months ODI Pre \& Post SCS Outcome

103
 Table S6: Included Studies Outcomes and Trends

Study	Metric	Baseline Scores	Mean Scores after SCS	Overall Trend
Randomized Controlled Trials				
Al-Kaisy et al. 2022	ODI	$\begin{aligned} & \text { G1: } 59.4(14.5) \mathrm{N}=22 \\ & \text { G2: } 58.7(9.7) \mathrm{N}=21 \end{aligned}$	$\begin{aligned} & \hline \text { G1: } \\ & 3 \text { months: } 33.8(22.6) \mathrm{N}=21 \\ & 6 \text { months: } 41.5(23.5) \mathrm{N}=19 \\ & 12 \text { months: } 33.9(21.5) \mathrm{N}=19 \\ & \text { G2: } \\ & 3 \text { months: } 37.3(20.5) \mathrm{N}=21 \\ & 6 \text { months: } 36.9(20.2) \mathrm{N}=21 \\ & 12 \text { months: } 39.4(20.8) \mathrm{N}=20 \\ & \hline \end{aligned}$	Significant Improvement in ODI at 3,6,12 months (p <0.001). No significant inter-group differences in ODI scores ($p=0.66$). Baseline of G1 45% and G2 48\% of patients in crippling disability reduced to 11% and 15% at 12 -months followup.
De Andres et al. 2017	ODI	$\begin{aligned} & \text { G1: } 27.18(5.21) \mathrm{N}=29 \\ & \text { G2: } 26.96(5.8) \mathrm{N}=26 \end{aligned}$	G1: 3 months: $31(23.3) \mathrm{N}=81$ 6 months: $21.07(9.9) \mathrm{N}=29$ 12 months: $22.07(7.86) \mathrm{N}=29$ G2: 3 months: $21.85(8.59) \mathrm{N}=26$ 6 months: $22.92(6.85) \mathrm{N}=26$ 12 months: $22.96(7.06) \mathrm{N}=26$	Significant mean reduction of 5-6 points in the ODI scores. A global average reduction of 4 points in both groups (conventional SCS v HF SCS) at the 12 -month assessment.
Eldabe et al. 2010	SF-36	$\begin{aligned} & \text { ODI: } 56.4 \text { (13.9) } \mathrm{N}=100 \\ & \text { (SCS+CMM) } \\ & \text { SF-36: } 27.4(0.61) \\ & \mathrm{N}=100(\mathrm{SCS}+\mathrm{CMM}) \end{aligned}$	SF-36: 6 months: 32.3 (7.98) N=50	Significant improvements at 6 months after SCS across seven of ten ODI sub-dimensions (all p <0.05). With the exception of personal care, these improvements were maintained at 24 months. Two subdimensions (personal care and sleeping) did not improve compared with baseline. Furthermore, continuing disability (score of 4 or more) remained with lifting and standing in 35-40\% of SCS patients at 24 months. At 3 and 6 months PCS SF-36 were significantly improved (p<0.05). Compared with baseline, significant SF-36 component score improvements were maintained at 24 months (both $\mathrm{p}<0.01$).
$\begin{aligned} & \hline \text { Hara et al. } \\ & 2022 \end{aligned}$	ODI	$\begin{aligned} & 44.7 \text { (} 95 \% \text { CI: } 41.4- \\ & 47.9) \mathrm{N}=47 \end{aligned}$	$\begin{aligned} & \text { 3 months: } 34.0 \text { (} 95 \% \text { CI: } 30.0-38.1 \text {) } \\ & \mathrm{N}=91^{*} \end{aligned}$	Mean change of -10.6 points (95% CI -14.1 to -7.2 points) for burst stimulation. * Post-SCS Total N was number of stimulation periods rather than number of patients.
Kapural et al.	ODI	ODI: 46.8	6 months: 24.1 (16.1)	The mean ODI score for patients in the $10-\mathrm{kHz}$ SCS treatment group

2022			12 months: 24.0 (17.0)	decreased significantly ($\mathrm{p}<0.001$) at the 3 and 6 month follow-ups.
Kumar et al. 2007	$\begin{aligned} & \hline \text { ODI } \\ & \text { SF-36 } \end{aligned}$	$\begin{aligned} & \text { ODI: } 57.4 \text { (12.5) N=52 } \\ & \text { SF-36: } 24.7 \text { (16.4) N=52 } \end{aligned}$	ODI: 6 months: 44.9 (18.8) N=50 SF-36: 6 months: 38.1 (23) $\mathrm{N}=50$	Compared with the CMM group, SCS group patients experienced enhanced health-related quality of life on seven of the eight dimensions of the SF-36 (p<0.02) and superior function (ODI, p< 0.001).
Rigoard et al. 2019	$\begin{aligned} & \text { ODI } \\ & \text { SF-36 } \end{aligned}$	$\begin{aligned} & \text { ODI: } 55.9 \text { (14.6) } \\ & \text { SF-36: } 24.08 \text { (6.73) } \end{aligned}$	ODI: 6 months: 43.9 (18.4) SF-36: 6 months: 31.58 (10.04)	Significant improvement at 6 mo ODI scores ($\mathrm{p}<0.001$) in the SCS+OMM "as treated" group as well as in the "ITT" and "completers" groups.
Non Randomized Controlled Trials				
Al-Kaisy et al. 2014	ODI	55 (1) $\mathrm{N}=72$	24 months: 40 (2) N=65	Significant Improvement in ODI at 24 months ($\mathrm{p}<0.001$). Baseline 90% of patients were classified as crippled or severely disabled, and this reduced to 49% at 24 months.
Barolat et al. 2001	ODI	54.8 (12.2) $\mathrm{N}=41$	$\begin{aligned} & 6 \text { months: } 45.7(14.9) \mathrm{N}=24 \\ & 12 \text { months: } 49.1(14.5) \mathrm{N}=15 \end{aligned}$	Significant improvement in ODI at 6 ($\mathrm{p}<0.001$) and 12 months (p <0.05).
Benyamin et al. 2020	ODI	51.5 (11.3) $\mathrm{N}=32$	3 months: $32.1 \mathrm{~N}=32$	Significant improvement in ODI at 3 months ($\mathrm{p}<0.01$). Baseline of 22% of patients in moderate disability, 63% in severe disability to 3-months outcome with 26% in minimal disability, 50% in moderate disability and 19% in severe disability.
Bolash et al. 2022	ODI	54 (18) $\mathrm{N}=49$	$\begin{aligned} & 1 \text { month: } 32.6 \mathrm{~N}=37 \\ & \text { 3 months: } 34.2 \mathrm{~N}=39 \\ & \text { 6 months: } 29.2(18) \mathrm{N}=39 \end{aligned}$	Mean ODI decreased 46\% indicating a reduction from severe to moderate disability.
Bondoc et al. 2022	ODI	24.32 (7.4) $\mathrm{N}=189$	12 months: 19.79 (8.94) $\mathrm{N}=189$	Mean ODI decreased significantly at 12 mo ($\mathrm{p}<0.001$).
Brooker et al. 2021	ODI	52.3 (12.3) N=50	$\begin{aligned} & 3 \text { months: } 34.6(13.7) \mathrm{N}=44 \\ & 12 \text { months: } 31.2(16.1) \mathrm{N}=43 \\ & 24 \text { months: } 31.5(20.7) \mathrm{N}=38 \\ & \hline \end{aligned}$	Significant improvement in ODI scores at 3 mo ($\mathrm{p}<0.001$), 12 mo ($\mathrm{p}<0.001$), and 24 mo ($\mathrm{p}<0.001$).
Burchiel et al. 1995	ODI	ODI: 52.3 (12.3) $\mathrm{N}=50$	3 months: 44 (20) $\mathrm{N}=45$	Significant improvement in ODI ($\mathrm{p}<0.001$) and Sickness Impact Profile ($\mathrm{p}<0.001$)
Campwala et al. 2021	ODI	$\begin{aligned} & \text { G1: } 49.48(14.9) \mathrm{N}=45 \\ & \text { G2: } 49.56(13.4) \mathrm{N}=73 \end{aligned}$	G1: 12 months: 38.54 (17.98) N=45 G2: 12 months: 37.49 (17.77) $\mathrm{N}=73$	G1 \& G2 showed significant improvement in ODI scores from baseline to 12 mo ($\mathrm{p}<0.001$).
Costantini et al. 2010	ODI	34.3 (7.6) $\mathrm{N}=28$	Follow-up Average of 24 months: $15.7 \text { (13.1) } \mathrm{N}=28$	Significant improvement in ODI scores from 34.3 (7.6) at baseline to 15.7 (13.1) at follow-up ($\mathrm{p}<0.05$), with a mean improvement of 54% at follow-up.
De Jaeger et al. 2021	ODI	$58(15.92) \mathrm{N}=81$	3 months: 31 (23.33) N=81	Significant improvement in ODI scores at 3 mo ($\mathrm{p}<0.001$).
Delmotte et	ODI	60.27 (CI: 2.887) N=72	6 months: 33.43 (CI: 3.877) N=14	The "optimized lead positioning" patients ($\mathrm{N}=14$) had significant

al. 2015				functional improvement from 60.67% baseline ODI to 33.43% ODI at 6 months.
DiBenedetto et al. 2018	$\begin{aligned} & \text { RMDQ } \\ & \text { WHODAS } \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { RMDQ: } 13.9(4.5) \mathrm{N}=21 \\ & \text { WHODAS 2.0: } 1.97 \\ & (0.42) \mathrm{N}=19 \end{aligned}$	$\begin{aligned} & \text { RMDQ: } 12 \text { months: } 10.8(4.8) \\ & \mathrm{N}=21 \\ & \text { WHODAS 2.0: } 12 \text { months: } 1.92 \\ & (0.64) \mathrm{N}=19 \end{aligned}$	After 12 mo , there was significant "within-group change" for RMDQ-m scores in the SCS + CMM group ($\mathrm{p}<0.02$). There was no significant "within-group change" for WHODAS 2.0 in the SCS+CMM group at 12 mo follow-up.
Do et al. 2021	ODI	ODI: 54	ODI: 42	Significant improvement in ODI scores at 24 mo follow-up ($\mathrm{p}<0.0001$)
Goudman et al. 2021	ODI	57 (17.97) N=185	$\begin{aligned} & 1 \text { month: } 31.26(17.58) \mathrm{N}=130 \\ & 3 \text { months: } 30.64(18.52) \mathrm{N}=114 \\ & 12 \text { months: } 33.34(16.86) \mathrm{N}=92 \\ & \hline \end{aligned}$	Significantly improvement in ODI at 1 month ($\mathrm{P}<0.001$), 3 months ($\mathrm{P}<0.001$), and 12 months $(\mathrm{P}<0.001)(\mathrm{F}=133.14, \mathrm{P}<0.001)$
Harman et al. 2020	ODI	85 (8.9) N=16	12 months: 16 (16.3) N=16	Significant improvement in ODI at 12 mo follow-up (p<0.001).
$\begin{aligned} & \text { Jonsson et al. } \\ & 2020 \end{aligned}$	ODI	48 (15) N=239		At 1,2, and 5 years there was no significant difference in "To-be SCS patients" for ODI scores. However, there was significant difference in ODI for "All patients" at 1,2, and 5 year follow up. Both groups reported "severe disability" for ODI at baseline, while the "All patients" group had improvement to "moderate disability" by 5 years and the "To-be SCS patients" remained at the "severe disability" mark.
Kallewaard et al. 2021	ODI	52.4 (1.6) N=58	1 month: 33.3 (2.5) N=58	Patients' level of disability as per ODI scores had an average reduction of $19.1+/-2.0$ points at $1 \mathrm{mo}, 19.7+/-2.3$ at 6 mo and $25.3+/-2.3$ at 12 months of treatment. After 12 months of treatment, 62% of patients were reclassified as per ODI categories from severely disabled or crippled to moderately or minimally disabled.
Kamieniak et al. 2019	ODI	31.47 (6.23) $\mathrm{N}=24$	$\begin{aligned} & 1 \text { month: } 26.15(7.87) \mathrm{N}=17 \\ & 3 \text { months: } 22.5(7.57) \mathrm{N}=12 \end{aligned}$	Significant improvement in ODI scores from baseline to 3 and 6 months ($\mathrm{p}<0.02$).
Kinfe et al. 2014	ODI	Cylindrical lead: 49.5 (12.3) Paddle lead: 38.6 (16.3)	Cylindrical lead (43.3) Paddle lead 37.3 (13.6)	Evaluation of the ODQ suggested gradual amelioration in both groups (cylindrical lead group and paddle lead group).
Mehta et al. 2022	ODI	$53.13 \mathrm{~N}=19$	$\begin{aligned} & 1 \text { month: } 35.33 \mathrm{~N}=17 \\ & 3 \text { months: } 33.64 \mathrm{~N}=17 \\ & 12 \text { months: } 37.4 \mathrm{~N}=16 \end{aligned}$	Significant improvement in ODI scores at 1,3 , and 12 months; $(p=$ $0.003)$, $(\mathrm{p}=0.004)$, and ($\mathrm{p}=0.011$), respectively. The number of patients who experienced "crippling" pain sustained at less than 50% at 1,3 , and 12 months
Mosiewicz et	ODI	36.75 (5.11) $\mathrm{N}=36$	6 months: 30.08 (8.4) $\mathrm{N}=36$	There is a statistically significant correlation between a decrease in

al. 2015				lower limb pain and level of disability according to the ODI ($\mathrm{P}<0.04$).
Mullins et al. 2022	ODI	30.78 (10.15) $\mathrm{N}=25$	6 months: 9.74 (6.94) $\mathrm{N}=25$	Significant improvement in ODI at $6 \mathrm{mo} \mathrm{(p<0.001)}$.
$\begin{aligned} & \text { Paul et al. } \\ & 2017 \end{aligned}$	ODI	$\begin{aligned} & \text { G1: } 52(15.1) \mathrm{N}=35 \\ & \text { G2: } 51.2(16.2) \mathrm{N}=13 \end{aligned}$	$\begin{aligned} & \text { G1: } 6 \text { months: } 40 / 5(15.9) \mathrm{N}=35 \\ & \text { G2: } 6 \text { months: } 53.8(15.2) \mathrm{N}=13 \end{aligned}$	At 6 mo , patients who were satisfied with SCS therapy had an average improvement of 11.5 points on the ODI compared to an average decline of 1.8 points in the patients who were not satisfied ($\mathrm{P}=.06$)
$\begin{aligned} & \text { Perez et al. } \\ & 2021 \end{aligned}$	ODI	$59.37 \mathrm{~N}=39$	$\begin{aligned} & 3 \text { months: } 39.64 \mathrm{~N}=38 \\ & 6 \text { months: } 36.4 \mathrm{~N}=36 \\ & 12 \text { months: } 38.48 \mathrm{~N}=34 \\ & 24 \text { months: } 35.4 \mathrm{~N}=33 \end{aligned}$	Significant improvement in ODI only at 6 months $(P=0.0368)$. SCS patients maintained a moderate disability from 3 months follow-up to the last monitoring visit. The SCS arm reported reduced symptoms from baseline to 3 months and remained relatively stable thereafter.
Slavin et al. 1999	ODI	$49.8 \mathrm{~N}=9$	1 month: $47.9 \mathrm{~N}=9$	No significant improvement in ODI at 1 month ($\mathrm{p}=0.46$; paired t test).
Spincemaille et al. 2004	RMDQ	RDQ: 16.9 (3.5) N=105	RDQ: 12.4 (4.8) $\mathrm{N}=96$	At 12 mo follow up there was statistically significant improvement ($\mathrm{p}<0.05$) for scores in SCS patients.
Van Buyten et al. 2013	ODI	$55 \mathrm{~N}=72$	$\begin{aligned} & \hline 3 \text { months: } 37 \mathrm{~N}=70 \\ & 6 \text { months: } 38 \mathrm{~N}=72 \\ & \hline \end{aligned}$	Significant improvement in ODI at 6 mo follow up (p<0.001).
van Heteren et al. 2022	$\begin{aligned} & \hline \text { ODI } \\ & \text { SF-36 } \end{aligned}$	$\begin{aligned} & \text { ODI: } \\ & \text { G1: } 49.1(14.1) \mathrm{N}=21 \\ & \text { G2: } 57.37(10.8) \mathrm{N}=54 \\ & \text { SF-36: } \\ & \text { G1: } 36.67(21.17) \mathrm{N}=21 \\ & \text { G2: } 25(14.18) \mathrm{n}=54 \end{aligned}$	ODI: G1: 12 months: 37.14 (15.98) $\mathrm{N}=21$ G2: 12 months: 41.5 (18.98) $\mathrm{N}=54$ SF-36: G1: 12 months: 52.14 (26.30) $\mathrm{N}=21$ G2: 12 months: 41.94 (20.20) $\mathrm{N}=54$	Patients in both groups had less disability at 12 months, as shown by the total score of the ODI (SCS + PNFS, p < 0.01 and SCS-only, $p=$ 0.004). Significant reduction in SF-36 scores at 12 months following SCS ($\mathrm{p}<0.001$).
$\begin{aligned} & \text { Zucco et al. } \\ & 2015 \end{aligned}$	ODI	61.6 (15) N=80	$\begin{aligned} & 6 \text { months: } 45.6(20.1) \mathrm{N}=80 \\ & 12 \text { months: } 45.5(19.6) \mathrm{N}=79 \\ & 24 \text { months: } 42.4(20.1) \mathrm{N}=78 \end{aligned}$	Significant improvement in ODI at 6 and 24 months ($\mathrm{p}<0.0001$). The proportion of patients classified as "severe," "crippled" or "serious" according to the ODI classes (91% at baseline) decreased significantly $(\mathrm{z}=5.754, \mathrm{p}<0.0001) 24$ months post-SCS treatment (47.5\%).

104

Figure S7-9: Forest plot diagrams of baseline ODI scores compared with ODI Scores at

3,6,24 months

Figure S7: Forest plot of comparison: 1 ODI Pre \& Post SCS, outcome: ODI 3 month.

	Post-SCS ODI			Pre-SCS ODI			Mean Difference		Mean Difference IV Random, 95\% CI			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95\% CI				
Al-Kaisy 2022 G1	33.8	22.6	21	59.4	14.5	22	8.9\%	-25.60 [-37.01, -14.19]				
Al-Kaisy 2022 G2	37.3	20.5	21	58.7	9.7	21	9.4\%	-21.40 [-31.10, -11.70]		-		
Brooker 2021	34.6	13.7	44	54	18	49	10.1\%	-19.40 [-25.86, -12.94]		-		
Burchiel 1995	44	20	45	52.3	12.3	50	10.0\%	-8.30 [-15.07, -1.53]				
De Andres 2017 G1	20.55	8.32	29	67.7	14.2	29	10.1\%	-47.15 [-53.14, -41.16]				
De Andres 2017 G2	21.85	8.59	26	27.18	5.21	26	10.5\%	-5.33 [-9.19, -1.47]		\square		
De Jaerger 2021	31	23.33	81	58	15.9	81	10.1\%	-27.00 [-33.15, -20.85]		-		
Goudman 2021	30.64	18.52	114	57	17.97	185	10.4\%	-26.36 [-30.63, -22.09]		-		
Hara 2022	34	19.71	91	44.7	14.17	47	10.2\%	-10.70 [-16.43, -4.97]		-		
Kamieniak 2019	22.5	7.57	12	31.47	6.23	24	10.3\%	-8.97 [-13.93, -4.01]		-		
Total (95\% CI)	484			534 100.0\% -19.90 [-28.24, -11.57]								
Heterogeneity: $\mathrm{Tau}^{2}=168.97 ; \mathrm{Chi}^{2}=184.51, \mathrm{df}=9(\mathrm{P}<0.00001)$; $\mathrm{I}^{2}=95 \%$									$\stackrel{\vdash_{-1}}{-100}$	1 [experimental]		100

*For Hara et al. Post-SCS ODI Total N was number of stimulation periods rather than number of patients.

Figure S8: Forest plot of comparison: 1 ODI Pre \& Post SCS, outcome: ODI 6 month.

Figure S9: Forest plot of comparison: 1 ODI Pre \& Post SCS, outcome: ODI 24 months.

Study or Subgroup	Post-SCS			Pre-SCS			Mean Difference Weight IV, Random, 95\% CI		Mean Difference IV, Random, 95\% CI			
	Mean	SD	Total	Mean	SD	Total						
Al-Kaisy 2014	40	2	65	55	1	72	56.6\%	-15.00 [-15.54, -14.46]		-		
Brooker 2021	31.5	20.7	38	52.3	12.3	50	17.8\%	-20.80 [-28.21, -13.39]		--		
Zucco 2015	42.4	20.1	78	61.6	15	80	25.6\%	-19.20[-24.74, -13.66]		--		
Total (95\% CI)			181			202	100.0\%	-17.11[-20.88, -13.34]		\checkmark		
Heterogeneity: $\mathrm{Tau}^{2}=6.47 ; \mathrm{Chi}^{2}=4.49, \mathrm{df}=2(\mathrm{P}=0.11) ; \mathrm{I}^{2}=56 \%$ Test for overall effect: $Z=8.89$ ($\mathrm{P}<0.00001$)									$\stackrel{\vdash}{-100}$	$\begin{aligned} & 1 \\ & -50 \\ & \text { [experimental] } \end{aligned}$		100

Figure S10: Forest plot of comparison: 1 SF-36 Pre \& Post SCS, outcome: SF-36 6months.

Figure S11: Study Type Subgroup Forest Plot Comparison: ODI Pre \& Post SCS, Outcome:

ODI 12 Months

Figure S12: Funding Type Subgroup Forest Plot Comparison: ODI Pre \& Post SCS, Outcome:

ODI 12 Months

Figure S13: Stimulation Type Subgroup Forest plot Comparison: ODI Pre \& Post SCS,
Outcome: 12 Months

[^0]: ${ }^{1}$ Johnsen LG, Hellum C, Nygaard OP, Storheim K, Brox JI, Rossvoll I, Leivseth G, Grotle M. Comparison of the SF6D, the EQ5D, and the oswestry disability index in patients with chronic low back pain and degenerative disc disease. BMC Musculoskelet Disord. 2013 Apr 26;14:148. doi: 10.1186/1471-2474-14-148. PMID: 23622053; PMCID: PMC3648434.
 ${ }^{2}$ Stratford PW, Binkley J, Solomon P, Finch E, Gill C, Moreland J. Defining the minimum level of detectable change for the Roland-Morris questionnaire. Phys Ther. 1996 Apr;76(4):359-65; discussion 366-8. doi:
 10.1093/ptj/76.4.359. PMID: 8606899.
 ${ }^{3}$ Jordan K, Dunn KM, Lewis M, Croft P. A minimal clinically important difference was derived for the Roland-Morris Disability Questionnaire for low back pain. J Clin Epidemiol. 2006 Jan;59(1):45-52. doi: 10.1016/j.jclinepi.2005.03.018. Epub 2005 Nov 4. PMID: 16360560.
 ${ }^{4}$ Badhiwala JH, Witiw CD, Nassiri F, Akbar MA, Jaja B, Wilson JR, Fehlings MG. Minimum Clinically Important Difference in SF-36 Scores for Use in Degenerative Cervical Myelopathy. Spine (Phila Pa 1976). 2018 Nov 1;43(21):E1260-E1266. doi: 10.1097/BRS. 0000000000002684. PMID: 29652783.
 ${ }^{5}$ Mark A. Shulman, Jessica Kasza, Paul S. Myles; Defining the Minimal Clinically Important Difference and Patientacceptable Symptom State Score for Disability Assessment in Surgical Patients. Anesthesiology 2020; 132:13621370 doi: https://doi.org/10.1097/ALN. 0000000000003240

