Abstracts

B381 A MODIFIED ENERGY DTM™ SCS THERAPY: 6-MONTH OUTCOMES OF A PROSPECTIVE, MULTI-CENTER STUDY ON PATIENTS WITH CHRONIC BACK AND LEG PAIN

1) Peacock, 2) D Provenzano, 3) M Fishman, 4) K Amideiian, 5) T Bromberg, 6) T Schmidt, 7) T White, 8) R Grewal, 9) B Justiz, 10) A Calodney, 11) A El-Naggar, 12) B Shah, 13) M Esposto, 14) D Katsinsk, 15) JW Kallewaard, 16) C Cain, 17) A Celand, 18) M LaRue, 19) RF Riillo, 20) E Theis, 21) Novant Health Spine Specialists, Winston-Salem, USA; 22) Pain Diagnostics and Interventional Care, Sewickley, USA; 23) Center for Intervventional Pain and Spine, Lancaster, USA; 24) IPM Medical Group, Walnut Creek, USA; 25) Delaware Valley Pain and Spine Institute, Chalfont, USA; 26) Goodman Campbell Brain and Spine, Carmel, USA; 27) Sprintz Center for Pain, Shennadoah, USA; 28) TSOAG Orthopedics and Spine, San Antonio, USA; 29) Oklahoma Pain Physicians, Norman, USA; 30) Precision Spine Care, Tyler, USA; 31) Drez One, LLC, Somersert, USA; 32) Carolinas Pain Center, Huntersville, USA; 33) Florida Pain Institute, Vero Beach, USA; 34) Sahlgrenska University Hospital, Department of Neurosurgery, Gothenburg, Sweden; 35) Rijnstate Hospital, Anesthesiology and Pain Medicine, Arnhem, Netherlands; 36) Medtronic, Minneapolis, USA

Background and Aims Spinal Cord Stimulation (SCS) is an established treatment indicated as an aid in the management of chronic, intractable pain of the trunk and/or limbs. Differential Target Multiplexed™ SCS is a proprietary therapy supported by preclinical and clinical research. In a recent Randomized Controlled Trial, DTM™ SCS demonstrated superior back pain relief to traditional SCS. To further tailor therapy delivery, DTM derivatives with reduced-energy profiles are being investigated.

Methods The DTM-LE SCS Study (NCT04601454) is an ongoing prospective, multi-center, open-label, post-market study to evaluate the efficacy of a DTM™ SCS derivative therapy. Primary inclusion criteria were patients indicated for SCS and overall pain Visual Analog Score (VAS) of ≥6 with moderate to severe back and leg pain.

Results Fifty-seven subjects (57.9% female) were enrolled and 43 completed trialing. Thirty-eight (38/43, 88.4%) had a successful trial period and 35 received a neurostimulator. At 3-months (n=32), the mean (%) change in overall VAS from baseline was -3.9 (-50.4%) and 75% of subjects reported satisfaction with the therapy. Furthermore, 68.8% of subjects improved to a less disabled category (Oswestry Disability Index) and 77.4% of subjects were in a better health state (EQ-5D). Outcomes from the 6-month visit will also be presented.

Conclusions Clinically meaningful pain relief, a high degree of therapy satisfaction, improved function, and improved quality of life were reported in this DTM™ SCS reduced-energy derivative study by patients with chronic back and leg pain. Energy conserving approaches have the potential to impact patient experience with both rechargeable and recharge-free devices.

B382 COMBINING SOMATIC AND SYMPATHETIC NERVE BLOCKADE TO MANAGE A DIFFICULT CASE OF CHRONIC OROFACIAL PAIN

B Campbell*, N Chogle. Ulster Hospital, Belfast, UK

10.1136/rapm-2022-ESRA.458

Background and Aims A young woman in great distress presented with a decade plus history of bilateral nociceptive and nocipolar orofacial pain, with a significant TMJ component. Her case was complicated further by PTSD and fibromyalgia. Conservative treatments including oral medications, physical therapy, oral splints and psychological interventions had been trialed, as well as botox injections and TMJ arthrocentesis. At this time, she was being managed with a combination of medications including high dose opioids. None of these treatments had given sustained pain relief or improved quality of life.

Methods We decided upon an interventional management plan combining somatic and sympathetic nerve blockade. Targeting the worst affected side first, we performed stellate ganglion and superficial cervical plexus blocks along with dedicated auricolotemporal, posterior auricular and occipital nerve blocks. After success on one side, we performed mirror image blocks on the opposite side after a three month interval.

Results Pain relief was almost immediate following the blocks and was sustained for a number of months, along with a reduction in anxiety and distress. The success of the blocks allowed us to successfully wean the opioids with patient consent, and facilitated better engagement with the wider bio-psycho-social treatment offered by the multidisciplinary team, which has ultimately resulted in a significant improvement in quality of life.

Conclusions While interventions are not always the answer in chronic pain, with careful patient selection and in skilled hands, they can be a very useful adjunct to the struggling patient, while avoiding the potential complications of long term medications.

B383 BOTULINUM TOXIN INFILTRATION AS AN OPTION FOR TREATMENT OF PERSISTENT HEADACHE ASSOCIATED WITH COVID-19: CASE REPORT

1) MJ Medina Torres*, 2) S Martín Santiago, 3) A Santos Macias. 1) Hospital Costa del Sol, Marbella, Spain; 2) Hospital Universitario Virgen de la Victoria, Málaga, Spain

10.1136/rapm-2022-ESRA.459

Background and Aims Different descriptions of long COVID have already been proposed, and the most common description includes symptoms lasting for over three months after the first symptom onset. One of the most frequent symptoms identified, besides fatigue and dyspnoea, is a new daily persistent headache. 3

Methods We describe a case of persistent headache associated with COVID-19, which had a poor response to pharmacological treatment. The patient scored a pain of 8 points in Visual Analog Scale (VAS). It was a widespread—affecting frontal, temporal, and occipital area—pulsating quality headache that worsened with mild physical activity.

Since Botulinum toxin type A has been used to treat chronic migraine for over a decade, we decided to try this therapeutic option after proving that the response to local anesthetics was positive.

Results She responded satisfactorily to bilateral greater occipital nerve block and infiltration of the frontal and temporal muscles with local anesthetic and corticosteroids, with an improvement during approximately 48 hours.

Two weeks later, we administered by ultrasound guidance 20 IU of botulinum toxin near the greater occipital nerve, and performed a mapping with botulinum toxin by administering it at different points: both trapezius, splenius, frontal muscles, bilateral orbicularis and bilateral temporal and parietal muscles. After seven days, the patient reported improvement of the symptoms (VAS 3) that were still present one month later.