Background and Aims Artificial intelligence (AI) has been widely used in anaesthesiology, but recent advances promise to revolutionize its application in the field. Epileptic seizure prediction is clinically useful for patients with epilepsy, improving safety, increasing independence, and allowing for acute treatment.

Methods In this paper, eighteen AI algorithms were used in two different EEG datasets to predict epileptic seizures and obtained good results.

Results In the Bonn EEG database, ETC has the best test accuracy, SGDC has the smallest SD, and SVM has the highest F1 score; in the CHB-MIT Scalp EEG database, RF has the best test accuracy and the highest F1 score, SGDC has the smallest SD. The test accuracy of all artificial intelligence methods is above 75%, the standard deviation is less than 0.7, and the F1 score is above 0.06.

Conclusions The tree classifier may be the best predictor of epilepsy during anaesthesia in the EEG database. In the future, more AI algorithms suitable for epilepsy prediction will be further explored and verified. More unpopular but important AI algorithms will be applied to explore better ML solutions. AI could be a valuable ally for anaesthesiologists who want to increase their productivity and potentially improve their accuracy.

Background and Aims The Royal College of Anaesthetists is the UK’s professional governing body which innovates and augments training within the specialty. Medical education has developed the concept of ‘spiral learning’ and competency-based training programmes [1]. Anaesthetic training in the UK continues to evolve, with the introduction of a holistic curriculum, implemented in 2021. Training is divided into stages, with progression from novice to fully independent anaesthetist in all areas of practice, including regional anaesthesia.

Our aim was to evaluate if the current level of exposure at Aberdeen Royal Infirmary (ARI), Scotland, a busy tertiary centre, is sufficient to meet the new curriculum needs and identify methods to maximise training opportunities from a trainee and trainers’ perspective.

Methods An online survey was sent out to the Anaesthetic Department of ARI.

Results We received 48 responses from 29 consultants (60.4%), 16 trainees (33.3%) and 3 SAS doctors (6.3%). 65% of respondents were familiar with the changes to the RCoA curriculum. 21% of respondents believed that trainees could meet these requirements. If a training opportunity in regional technique was identified, 52% wanted it communicated via WhatsApp and 54% wanted it to be highlighted on CLWRota. 73% of respondents felt it would be helpful to have a regional enthusiast available to provide advice, observe, or perform the block during the day.

Conclusions The anaesthetic training programme is designed to expand a clinician’s ability over time. In order to achieve competency in regional anaesthesia, both trainees and trainers will be required to engage in innovative approaches in order to achieve learning objectives.

Background and Aims The new anaesthetic training curriculum in the UK demands high levels of competency in regional anaesthesia (RA) 1. Training in RA may be incomplete, as evidenced by a departmental survey showing that three-quarters of trainees felt RA skills were not easily obtained. Although most trainees had previously received teaching or accessed RA educational resources, 72% still stated they had little or no confidence in RA.