Propofol 2 mg/kg, Ketamine 0.5 mg/kg, Rocuronium 0.6 mg/kg, Sevoflurane 2%, Dexmedetomidine 0.5mg/kg/h, Magnesium 30 mg/kg/h continuously. After induction in anesthesia in prone position, we applied bilateral ESP one level above the injury with 2x20 ml Bupivacaine 0.25%+Dexamethasone 8mg. Postoperative analgesia was enabled with 2x2 g Midazolam, Ketamine 0.05mg/kg/h, Paracetamol 3x1g, Dexamethasone 4 mg, Magnesium 1.5g. If the intensity of pain was 7–10 on the VAS scale, amp. Trodon 100 mg will be given as a rescue analgesia. Postoperative analgesia was monitored in the next 48 hours, as well as postoperative nausea, vomiting, shaking and opioid dose given postoperatively.

Conclusions OFA with ESP are an ideal combination as anesthetic technique that provides good perioperative analgesia. It was avoided application of opioids and their side effects. Patients’ care and pain control have equal importance as surgical results and have a major impact on the patient’s perception of their hospital experience.

Abstract B143 Table 1

<table>
<thead>
<tr>
<th>Pr/no</th>
<th>Sex</th>
<th>Age</th>
<th>Fixation level</th>
<th>Duration of surgery</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m</td>
<td>60</td>
<td>Th L2-L2</td>
<td>180 min</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>31</td>
<td>L1-L1 (Fracture Th12)</td>
<td>165 min</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>41</td>
<td>L3-S1 (Spinotenesis)</td>
<td>360 min</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>63</td>
<td>L2-S1 (Spinalisostesis)</td>
<td>240 min</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>61</td>
<td>L2-S1 (Spinotenesis)</td>
<td>285 min</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>52</td>
<td>Th1-L2 (Fracture Th12)</td>
<td>330 min</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>m</td>
<td>62</td>
<td>L3-S2 (Spondylolisthesis)</td>
<td>240 min</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>51</td>
<td>Th2-L2 (Fracture Th1.1)</td>
<td>180min</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>55</td>
<td>L1-S1 (Spinotenesis)</td>
<td>300min</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>71</td>
<td>Th1-L4 (Fracture Th1.1)</td>
<td>240 min</td>
<td>30</td>
</tr>
</tbody>
</table>

Results Opioid free anesthesia with synergistic action with ESP block provide good perioperative analgesia without use of opioids. The highest pain intensity occurred 8 hours postoperatively. No need of applying rescue analgesia postoperatively. None of the patients had nausea nor vomiting. Transient nystagmus occurred postoperatively in two patients.

Abstract B143 Table 2

<table>
<thead>
<tr>
<th>Pr/no</th>
<th>VAS 1st h</th>
<th>VAS 4th h</th>
<th>VAS 8th h</th>
<th>VAS 12th h</th>
<th>VAS 24th h</th>
<th>VAS 36th h</th>
<th>VAS 48th h</th>
<th>PONV</th>
<th>Anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Background and Aims Rectus sheath block (RSB) is a regional anesthesia technique, that provides somatic analgesia (without visceral analgesia) by blocking the ventral rami of the 7th to 12th intercostal nerves with injection of local anesthetic in the space between the rectus abdominis muscle and the posterior rectus sheath. It can be used as a part of multimodal analgesia together with usage of non-opioid drugs, such as lidocaine, ketamine and magnesium, given as a continuous intravenous infusion during midline incisions in emergency open abdominal surgeries. Multimodal analgesia is recommended for pain management following major surgery.

Methods We are presenting four cases of emergency open abdominal surgeries where bilateral RSB was performed with 0.25% bupivacaine after induction to general anesthesia. All patients received 4 mg dexamethasone and a continuous intravenous infusion with 2 mg/kg/h lidocaine, 0.2 mg/kg/h ketamine and 20 mg/kg/h magnesium till the end of surgery. All patient received 1 gr metamizole at the end of operation. In the postoperative period pain was followed with Visual Analogue Scale (VAS) score 2, 6, 12, 24, 36, 48 and 72 hours after operation and analgesia regime included metamizole 1 gr four times a day. For pain of 6–10/10 1 mg/kg tramadol was given.

Results During surgery request for opioids was lower and pain scores in the first 72 hours after surgery were reduced too.

Conclusions Bilateral rectus sheath block with continuous intravenous infusion of lidocaine, ketamine and magnesium provides sufficient analgesia during emergency laparotomies, lower opioid requirements during and after surgery, prolong neuromuscular block and all patient were hemodynamically stable.

Miscellaneous

Abstract B145 Table 2

<table>
<thead>
<tr>
<th>Pr/no</th>
<th>VAS 1st h</th>
<th>VAS 4th h</th>
<th>VAS 8th h</th>
<th>VAS 12th h</th>
<th>VAS 24th h</th>
<th>VAS 36th h</th>
<th>VAS 48th h</th>
<th>PONV</th>
<th>Rescue analgesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
AN ARGUMENT FOR THE POTENTIAL OF A VETERINARY
TOPOGRAPHY OF A VETERINARY

A potential for veterinary

The aim was to compare informations recorded using the

The scanned-in anaesthetic paper chart on the trust electronic

We analysed anaesthetics charts availability, patient details,

We found significant overall improvement in record

100% EPR charts available Vs 80% scanned-in paper

100% vs 90%, airway management

100% vs 76%, anaesthetist name 100% vs 95%, overall legibility

80%.

100% vs 90%, airway management

100% vs 76%, anaesthetist name 100% vs 95%, overall legibility

80%.

Conclusions Our EPR satisfies the current AAGBI guidelines

EPR pre-populates anaesthetic procedures, it’s time efficient

as it automatically uploads key information of patient, surgery
details and clinicians involved. Drug names and doses adminis-
tered are recorded easily. This minimises documentation errors
producing highly legible, good quality document. Automatic

device allows instant recording of observation

B146 AN ARGUMENT FOR THE POTENTIAL OF A VETERINARY
TOPOGRAPHY OF A VETERINARY

S Jeffery*. Birmingham City University, Birmingham, UK

Background and Aims In the veterinary market a product

called Tri-Solfen has been available for many years which allows

for topical anaesthesia for animals with painful wounds. This product

contains a mixture of short acting (lidocaine)

and long acting (bupivacaine) local anesthetics together with

adrenaline (to reduce bleeding) and cetrimide (a common anti-

microbial agent, found in ‘Savlon’). This product is designed
to ‘spray and stay’ ie stick to the wound once sprayed on.

Only a little product is therefore required to give good pain

relief. Patent issues have put off investors from funding studies

into the potential human uses of this very successful veterinary

product.

Methods Medical Ethics are working on bringing this concept

of a sprayable topical anaesthetic to the human market. If the early

trials are successful, it is envisaged that the use of this product

could rapidly allow for safe pain relief in large numbers of casualties with blast-related burn injury, or at least

have an opioid-sparing action.

Results Currently first-in-man trials are undergoing looking at

ensuring that toxic levels of local anaesthetic do not develop in the blood stream. There are also other potential benefits

from the early application of an antimicrobial agent such as
cetrimide, which has yet to be studied.

Conclusions We aim to describe where we are currently with

our research strategy, and look for other partners who are

willing to help us bring this potentially extremely useful product

for use either in the clinic, the burns unit, the battlefield or

following a terrorist incident.

B147 COMPARATIVE EFFECTIVENESS OF ORAL VERSUS
INTRAVENOUS TRANEXAMIC ACID IN PRIMARY TOTAL
HIP AND KNEE ARTHROPLASTY

1JF Reichel*, 2CJ DeFrancesco, 1M Popovic, 1E Gbaje, 1J2 Liu, 1J3HC Haskins, 1DJH Kim, 1DB Malouf, 2MA Kirksey, 1J3KM Jiles-Elysee, 1J2EM Soffin, 1J3K Kumar, 1J2C Beathe, 1J5 Garvin, 1J2K DelPizzo, 1J7 Saleh, 1HZ Zhong, 1J5G Memtsoudis. 1Department of

Anesthesiology, Critical Care and Pain Management, Hospital for Special Surgery, New York, USA; 2Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, USA; 3Department of Anesthesiology, Weill Cornell Medical College, New York, USA; 4Pharmacy Department, Hospital for Special Surgery, New York, USA

Background and Aims The use of tranexamic acid (TXA) has

reduced rates of perioperative blood transfusion for total hip

arthroplasty (THA) and total knee arthroplasty (TKA)1. While oral

rather than intravenous (IV) dosing of TXA at the time of

surgery may simplify perioperative protocols and reduce
costs, it is not clear whether oral TXA is as effective as IV

TXA in reducing blood loss and transfusion rates.

Methods This randomized controlled trial compared the use

of one preoperative dose of oral TXA (1,950mg) to one pre-

operative dose of IV TXA (1,000mg) in THA (N=200) and

TKA (N=200). Consecutive patients undergoing primary THA or

TKA under regional anesthesia with sedation were enrolled.
The primary outcome was calculated blood loss (CBL). Seco-
dary outcomes were transfusions and complications, including

cardiac events and venous thromboembolism. The study

was designed as a non-inferiority trial with an intention-to-treat

analysis.

Results Oral TXA was non-inferior to IV TXA (p<0.001).

Mean CBL values were 842.21 mL versus 860.45 mL for

THA and 798.48 mL versus 878.13 mL for TKA in the oral

and IV arms, respectively. There was one postoperative trans-

fusion, which occurred in the IV TXA arm of the study.

There was no difference in complication rates between

the two arms of the study.

Conclusions Oral TXA can be feasibly administered in the pre-

operative setting prior to THA or TKA and is non-inferior to

IV TXA with respect to CBL and transfusion rates in this

setting.

B148 EFFECT OF PORTABLE NEGATIVE PRESSURE UNITS ON
EXPELLED AEROSOLS IN THE OPERATING ROOM
ENVIRONMENT

1M Popovic*, 1J2C Beathe, 1E Gbaje, 1M Sharp, 1J2JG Memtsoudis. 1Department of

Anesthesiology, Critical Care and Pain Management, Hospital for Special Surgery, New York, NY, USA, New York, USA; 2Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA, New York, USA; 3Department of Health Policy and Research, Weill

Cornell Medical College, New York, NY, USA, New York, USA

Background and Aims Spontaneously breathing patients under-

going procedures under regional anesthesia can expose operat-

ing room personnel to infectious agents. The use of localized

Abstracts


A157