Abstract B42 Figure 3 Likelihood of performing ultrasound-assisted CNB after receiving training (scale 1–5, where 1 = unlikely and 5 = most likely)

20% of respondents highlighted concerns. These included the perceived additional time needed in emergencies, the availability of an ultrasound machine, patient safety and deskilling in the traditional landmark approach.

93% replied that ultrasound decreases number of attempts and improves accuracy of vertebral level identification.

87% suggested regular practical teaching sessions to improve confidence.

Conclusions The majority of anaesthetists in our hospital have no or very little experience in ultrasound-assisted CNB and were not confident to perform this technique. Replies suggested that lack of training and limited equipment are barriers to regular use. We intend to address these concerns with regular training sessions and promote the availability of a dedicated ultrasound machine on the maternity ward.

Abstract B43 Figure 1 Monthly data on ultrasound-assisted epidural/spinal anaesthesia performed.

Abstract B43 Figure 2 Monthly data on number of needle puncture attempts per epidural/spinal anaesthesia performed.

Conclusions The data demonstrates that the use of ultrasound for central neuraxial blockade on parturients is very low and further engagement is required to change practice. This may include targeted teaching sessions to anaesthetists by an experienced practitioner and increasing awareness amongst anaesthetists about the benefits of using ultrasound.

Although no statistical analysis of the data was performed, a trend towards increased ultrasound use has been noted following targeted ultrasound teaching sessions. This may in turn have some role to play in the reduction of needle puncture attempts demonstrated by the data.