Background and Aims A dedicated regional block room, the first in Scotland, was introduced to Queen Elizabeth University Hospital in 2020, as the West of Scotland Major Trauma Centre was established. Acute Pain Services (APS) maintained a database of all trauma patients receiving regional anaesthesia for rib fractures. We aim to describe this population, injury severity, regional techniques employed and outcomes measures.

Methods This was a retrospective observational study of patients identified by APS database between 2017 and July 2021. Data was collected from electronic notes. Clinical Frailty Scale and Trauma Injury Severity Score were employed. Outcome measures included time to first block attempt, intravenous morphine equivalent dose (MED) 24-hours post-block compared to 24-hours pre-block, invasive ventilation, critical care length of stay (LOS) and survival to hospital discharge. Caldicott Guardian approval was obtained.

Results 104 patients were identified (Figures 1 to 3). Mean time to first block was 39.1 hours, median 23 hours. 22.1% required invasive ventilation and mean critical care LOS was 6.9 days. In patients with isolated chest trauma, there was a mean reduction in intravenous MED of 25.8mg. Observed survival to hospital discharge was 93.3%.

Conclusions Patients with rib fractures are at significant risk of pulmonary complications without timely access to high quality analgesia. We observed a mean reduction in opioid consumption following regional technique in the isolated chest trauma cohort. Provision of regional analgesia was facilitated by a dedicated block room during a time of increasing demand. Our next goal is to develop a rib fracture pathway to further improve patient care.
Abstract B41

Results

Most respondents (74%) strongly agreed that the phantom was realistic and 50% of free-text feedback included ‘realistic’ (Fig. 2). No respondents noted any anatomical features as incorrect or absent.

Conclusions

There are no other ESP block phantoms which incorporate both physical- and sono-anatomy of all major structures identified by international consensus. Our novel process features innovative materials that yield highly realistic yet low-cost phantoms. It can be employed to generate phantoms for any ‘Plan-A’ block, avoiding instruction on patients or cadavers.

Project partially supported by an NIAA Grant.

B42

SURVEY OF ANAESTHETISTS ON THE USE OF ULTRASOUND FOR CENTRAL NEURAXIAL BLOCKADE ON PARTURIENTS

Y Mahmoud*, M Walters, K Rizkallah, M Oliver, M Rigaudy. East Kent Hospitals University NHS Foundation Trust, Ashford, UK

10.1136/rapm-2022-ESRA.117

Background and Aims

We conducted a survey on the use of ultrasound for central neuraxial blockade (CNB) on parturients between November 2021 to March 2022. The aim was to discover anaesthetists experience with this technique and explore opinions and concerns prior to encouraging a change in practice.

Methods

The survey was disseminated electronically throughout the department comprising 60 anaesthetists. Questions covered experience and likelihood of changing practice after a period of training (if required).

Results

31 out of 60 responses were received.

![Figure 1](image1)

Abstract B41 Figure 1

Results Most respondents (74%) strongly agreed that the phantom was realistic and 50% of free-text feedback included ‘realistic’ (Fig. 2). No respondents noted any anatomical features as incorrect or absent.

![Figure 2](image2)

Abstract B41 Figure 2

Conclusions There are no other ESP block phantoms which incorporate both physical- and sono-anatomy of all major structures identified by international consensus. Our novel process features innovative materials that yield highly realistic yet low-cost phantoms. It can be employed to generate phantoms for any ‘Plan-A’ block, avoiding instruction on patients or cadavers.

Project partially supported by an NIAA Grant.

![Figure 1](image3)

Abstract B42 Figure 1

Grade of anaesthetists responses and experience in performing ultrasound-assisted CNB

![Figure 2](image4)

Abstract B42 Figure 2

Confidence in performing ultrasound-assisted CNB (scale 1–5, where 1= not confident and 5= extremely confident)