Recommendations for effective documentation in regional anesthesia project

ABSTRACT

Background and objectives Documentation is important for quality improvement, education, and research. There is currently a lack of recommendations regarding key aspects of documentation in regional anesthesia. The aim of this study was to establish recommendations for documentation in regional anesthesia.

Methods Following the formation of the executive committee and a directed literature review, a long list of potential documentation components was created. A modified Delphi process was then employed to achieve consensus amongst a group of international experts in regional anesthesia. This consisted of 2 rounds of anonymous electronic voting and a final virtual round table discussion with live polling on items not yet excluded or accepted from previous rounds. Progression or exclusion of potential components through the rounds was based on the achievement of strong consensus. Strong consensus was defined as ≥75% agreement and weak consensus as 50%–74% agreement.

Results Seventy-seven collaborators participated in both rounds 1 and 2, while 50 collaborators took part in round 3. In total, experts voted on 83 items and achieved a strong consensus on 51 items, weak consensus on 3 and rejected 29.

Conclusion By means of a modified Delphi process, we have established expert consensus on documentation in regional anesthesia.

INTRODUCTION

Accurate and concise documentation is important for both healthcare delivery and medicolegal protection. Several international medical governing bodies place accurate record keeping as one of the fundamental requirements for good clinical care.1,2 Despite the increase in use of regional anesthesia, there is limited information regarding characteristics of effective documentation. This is in contrast to the wealth of documentation standards which exist for general anesthesia.3

The aim of this study was to establish a consensus opinion among a panel of international experts
Original research

regarding the recommended components of documentation in regional anesthesia.

The recommendations contained herein do not define standard of care. They are not intended to replace clinical judgment. In the imperfect setting of heterogeneity of the data, limited data, controversial topics, and bias inherent to expert opinion, compliance with the recommendations may not result in improved outcomes compared with alternative therapies consistent with personalized medicine.

METHODS

An international executive committee consisting of JLB, MJ, HMA, EMLM, and EV was created to design the format of the study. A modified Delphi methodology was chosen as it is a widely used systematic process for achieving consensus amongst a group of experts. For this study it was decided that a 3 round, prospective Delphi process would be used with 2 rounds of electronic voting and a final round consisting of a round-table discussion and live polling. A steering committee consisting of BPA and GCC was formed to facilitate the management of the Delphi process as well as analyze the results of the voting and communicate with the panel of experts.

Collaborator selection

One-hundred and three experts from North America (n=37), Europe (n=53), and Australasia (n=13) were invited to participate. All those invited were known to have extensive clinical, educational or research experience in the field of regional anesthesia. In addition, a medicolegal expert from the USA was included to advise on any legal implications arising from the consensus document but did not participate in the voting process.

Generation of the long list

A directed literature review was performed to create an exhaustive list of documentation components for performing a regional anesthetic. A MEDLINE search was conducted using the following terms: ‘regional anaesthesia documentation’, ‘peripheral nerve block documentation’, ‘consent for regional anaesthesia’, ‘regional anaesthesia litigation’, ‘documentation’, and ‘anaesthesia records’ yielding 63 potential documentation components. Following review and discussion by the executive committee, an additional 12 items were added to produce the final long list (online supplemental appendix 1).

Modified Delphi process

A modified Delphi methodology was chosen as it is a widely used systematic process for achieving consensus among a group of experts. It is characterized by the generation of a long list of items followed by multiple rounds of anonymous voting and feedback. For this study, all experts who had agreed to take part were invited to participate in 2 electronic voting rounds and a third virtual round table discussion with live polling (figure 1). Strict deadlines were imposed on collaborators to complete each round of the Delphi process within a prescribed timeline. Any collaborators who did not vote within the timeline were excluded from all subsequent rounds and were not included as an author on final publication.

In previous Delphi studies consensus has been defined as ≥75% agreement between collaborators. In this study, 50%–74% was deemed to be weak consensus, while ≥75% was agreed to be strong consensus. These ranges were used throughout the Delphi rounds to decide on each item’s progression and ultimate inclusion in the final list of suggested documentation components.

Figure 1 Flowchart showing structure of Delphi process and progress of experts throughout the project.
Rounds 1 and 2 were conducted using an online survey tool (Survey Monkey, Momentive, San Mateo, California, USA) distributed via email. Collaborators were asked to ‘agree’ or ‘disagree’ with each of the potential documentation components included in the long list. Commentary and suggestions for additional items were encouraged and were recorded via the same online tool. In round 1, potential documentation components achieving ≥50% agreement proceeded to round 2, while those with <50% agreement were excluded (Figure 2). Following review of the comments made by the collaborators in round 1, some items were reworded or clarified, and any suggested additional items were included for round 2 voting.

In round 2, items achieving ≥75% agreement were accepted into the final list of suggested documentation components, while those achieving <50% were excluded. Items with 50%–74% agreement proceeded to round 3 for further discussion. Based on comments made by collaborators in round 2, some items were reworded or clarified. Any suggested additional items were included for consideration in the round 3 live discussion.

Round 3 was conducted via online videoconferencing software with polling capabilities (Zoom, Zoom Video Communications, San Jose, California, USA). The study included collaborators from multiple countries spanning different time zones, therefore it was unlikely that all collaborators would be available at the same time to take part in the discussion. To decide on a time for round 3 to take place we used online meeting-scheduling software (Doodle, Zurich, Switzerland) to allow collaborators to pick preselected times which would suit their schedule. The most mutually convenient time was picked and circulated to the collaborators via email. Those collaborators unable to attend the live third round were invited to submit comments in advance of the meeting via another survey (Survey Monkey, Momentive, San Mateo, California, USA). A summary of the outcomes of rounds 1 and 2 was distributed to all collaborators prior to the virtual discussion to avoid confusion about items previously excluded and allow for a more productive discussion. The meeting was co-chaired by EMLM and JLB, who facilitated discussion amongst collaborators via both electronic messaging and oral discourse. Strict adherence to time limits on discussion (5 minutes) and voting (1 minute) were enforced. All comments made by collaborators in absentia were displayed on-screen for participants during the discussion to ensure all opinions were considered prior to live polling. Items achieving ≥75% agreement were accepted into the final list of suggested documentation components. Those achieving 50%–74% were accepted as weak agreement, and those achieving <50% were excluded.

RESULTS
One-hundred and three experts in regional anesthesia were invited to take part in the Delphi process. In total 79 agreed to participate (77%); 26 from North America (26/37, 70%), 40 from Europe (40/53, 75%) and 13 from Australasia (13/13, 100%). Seventy-seven collaborators who agreed to take part in the study (97%) completed both rounds 1 and 2. Fifty of the collaborators who originally agreed to take part in the study (65%) were available and took part in the round 3 virtual discussion. The median number of voters for each item in round 3 was 48 (range: 46–50).

Seventy-five potential items were included in round 1 of which 67 achieved ≥50% agreement and progressed to round 2. Eight items achieved <50% agreement and were excluded (Table 1). Responses and collaborator commentary were collected.
Discussion

This study, to our knowledge, is the first to attempt and to achieve an international expert consensus recommendation on documentation in regional anesthesia. Important work has been conducted previously in this area, however only at a national level.\(^6\)\(^7\) It is hoped that our work will facilitate local institutions in their efforts to support physicians with their documentation and quality improvement needs.

While the majority of the potential documentation components were identified in the literature review, several items were added for consideration due to their necessity in billing processes in privately funded healthcare systems. The significant variation in current documentation practices in different countries, in particular between privately and publicly funded healthcare systems, was a theme throughout the study. We encountered commentary in all Delphi rounds that some items required inclusion in certain countries to ensure payment for the performing anesthesiologist. These same items were deemed unnecessary by collaborators from health systems where documentation does not directly impact an individual clinician’s reimbursement. This issue is reflected in the voting patterns between the USA versus non-USA anesthesiologists (for full list of USA vs non-USA voting, see online supplemental appendix 3). Taking ‘surgeon request for regional anesthesia’ as an example, 78% of USA anesthesiologists agreed in round 1 that this item should be included as a documentation component versus just 22% of anesthesiologists located outside of the USA. Ultimately surgeon request for regional anesthesia was rejected in round 1 with only 38% agreement.

We anticipated that collaborators might vote according to individual or local standards of practice rather than specifically the documentation thereof. This was an issue in round 1 and was reflected in the collaborator commentary which contained many comments to the effect of ‘I don’t use X technique’ or ‘X technique should no longer be used’ or ‘X piece of equipment is not available in my hospital’. An example which highlights this issue is the use of nerve stimulators. An item included in round 1 was ‘No Evoked Motor Response (EMR) <___mA (when applicable)’ which received numerous comments stating that collaborators were not clear what this meant, no longer use nerve stimulators or that the use of nerve stimulators does not improve the safety of nerve blocks. These comments were associated with collaborators voting ‘disagree’. Despite these comments and votes this item received sufficient agreement (71%) to progress to round 2. To clarify the item in round 2, we changed the wording to ‘No EMR <___mA (when applicable i.e. when nerve stimulator used)’. This item subsequently received 81% agreement in round 2. We clarified several other items with the phrase ‘if applicable’ or ‘if used’ and reiterated to the collaborators that the purpose of the study was to define recommended documentation components and not their personal practice.

It was found that a number of collaborators had voted against items being included as they would be found elsewhere in the medical record (e.g. patient date of birth, name, vital signs) and therefore would be an unnecessary duplication. This was mentioned particularly in the context of electronic medical records where a good deal of data entry is automatic rather than by direct human input. These systems, however, are by no means universally used. The executive committee agreed that for the
Table 3 Final list of recommendations

<table>
<thead>
<tr>
<th>Patient information</th>
<th>Level of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient name</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient date of birth</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient gender</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient medical record number/hospital number</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient weight</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient height</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient American Society of Anesthesiologists (ASA) physical status classification</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient allergies</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Procedure preparation

<table>
<thead>
<tr>
<th>Block performed by (name)</th>
<th>Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade of block performer (e.g., consultant, fellow, resident, registrar)</td>
<td>Weak</td>
</tr>
<tr>
<td>Name of supervisor (if applicable)</td>
<td>Strong</td>
</tr>
<tr>
<td>Documentation of patient consent gained (as per local standards e.g., written, verbal)</td>
<td>Strong</td>
</tr>
<tr>
<td>Documentation of individual risks of procedure discussed (as per local standards)</td>
<td>Strong</td>
</tr>
<tr>
<td>Pre-anesthetic / block evaluation</td>
<td>Strong</td>
</tr>
<tr>
<td>Coagulation considered</td>
<td>Strong</td>
</tr>
<tr>
<td>Pre-procedure diagnosis (post-operative pain management / surgical diagnosis)</td>
<td>Strong</td>
</tr>
<tr>
<td>Timeout / World Health Organisation (WHO) checklist</td>
<td>Weak</td>
</tr>
<tr>
<td>Stop moment performed</td>
<td>Strong</td>
</tr>
<tr>
<td>Intravenous access</td>
<td>Strong</td>
</tr>
<tr>
<td>Regional anesthesia procedure name</td>
<td>Strong</td>
</tr>
<tr>
<td>Patient position during regional anesthesia procedure</td>
<td>Strong</td>
</tr>
<tr>
<td>Monitors applied</td>
<td>Strong</td>
</tr>
<tr>
<td>Baseline vital signs</td>
<td>Strong</td>
</tr>
<tr>
<td>Pre-medication (type and quantity of sedation)</td>
<td>Strong</td>
</tr>
<tr>
<td>Level of sedation (no sedation / light sedation / deep sedation / general anesthesia)</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Procedure performance

Time and date of regional anesthesia procedure	Strong
Aseptic agent used	Strong
Aseptic technique used as per local policy	Strong
Skin infiltration with local anesthetic	Strong
Needle design: tip, manufacturer, length, gauge	Strong
Local anesthetic used for regional anesthesia technique (concentration and volume)	Strong
Epinephrine dose if used (concentration)	Strong
Adjunct used (e.g., bicarbonate, clonidine etc.)	Strong

Specific for peripheral nerve block performance

Side of block	Strong
Technique of needle localization (ultrasound / nerve stimulator / landmark)	Strong
No Evoked Motor Response (EMR) <____mA (when applicable i.e. when nerve stimulator used)	Strong
Minimum current and current duration (if nerve stimulator used)	Strong
Absence of blood on aspiration	Strong
Catheter depth at the skin	Strong
Absence of pain / paresthesia during injection	Strong
Complications	Strong

Specific for neuraxial procedure performance

Technique (approach used eg, median/paramedian)	Strong
Vertebral level of needle insertion	Strong
Technique used: loss of resistance to saline/air for epidural insertion	Strong
No of attempts	Strong

Table 3 Continued

Epidural needle depth at loss of resistance	Strong
Catheter depth at the skin	Strong
Note on aspiration and action taken	Strong
Epidural test dose (if applicable)	Strong
Absence of pain / paresthesia during injection	Strong
Dermatomal level of spinal or epidural block achieved (if assessed)	Strong
Complications	Strong

Postprocedure

| Patient vital signs after the procedure | Strong |
| Postprocedure instructions (as per local standards) | Strong |
pre-existing neurology or deficits. ‘Pre-procedure diagnosis (post-operative pain management/surgical diagnosis)’ and ‘Indication for regional anesthesia (surgical anesthesia or analgesia)’ were considered by many collaborators to be interchangeable and as such only ‘Pre-procedure diagnosis (post-operative pain management/surgical diagnosis)’ was accepted following discussion in round 3. The recording of the patient’s pre-procedure and post-procedure Visual Analog Score (VAS) were rejected in round 1 as collaborators felt that while they might be of research interest, they were of limited clinical relevance.

There was detailed discussion around the inclusion of ‘Stop Before You Block (SBYB)’ and the World Health Organisation (WHO) Surgical Safety Checklist/time out. The SBYB campaign originated in the UK and has gained some international acceptance, however, as reported by many collaborators, it is not globally recognized and thus not used in all countries. While the WHO checklist is more widely used, the argument was made that it is performed prior to surgery and not necessarily prior to a block. This is important when regional anesthesia is not performed for surgical anesthesia e.g. labor epidural, or is performed outside the theater e.g. in a dedicated block bay. It was generally agreed that should a ‘stop’ moment occur it should be documented, however the precise format of this remains unclear and should be determined by local practices.

Consideration of the patient’s coagulation status (‘Coagulation considered’) was accepted with weak agreement. Many collaborators commented that while it should be considered, it was not necessary to document it separately as it forms part of the routine pre-anesthetic/block assessment.

Procedure performance

As previously discussed, 4 items in the original long list relating to aseptic technique were combined into a single item, ‘aseptic technique as per local guidelines’, which was accepted.

Documentation specific to peripheral nerve block procedures

‘Side of Block’ was accepted to the final list, however, documentation of ‘Block side marked’ was excluded in the final round table discussion, as it was felt to be repetitive and was adequately addressed elsewhere e.g. by SBYB or a similar stop-moment.

The commentary surrounding the documentation of nerve stimulator technique is perhaps a reflection of changes in regional anesthesia practice; a number of collaborators stated they were not familiar with, or no longer used, several of the techniques described. ‘No EMR < __ mA (when applicable i.e. when nerve stimulator used)’ and ‘Minimum current and current duration (when applicable i.e. when nerve stimulator used)’ progressed to the final list. ‘Description of quality of paresthesia’ and ‘Description of motor response’ were rejected on the basis that if a nerve locating method was used and a defined end point reached such as paresthesia or muscle contraction, that a description of this was too much detail. ‘Catheter tip location confirmed by ultrasound/neural stimulator’ and ‘Technique of injection (via needle or catheter)’ were also rejected due to perceived excessive detail without providing additional information. ‘Note on incremental injection’ was rejected on the basis that while incremental injection techniques are advocated, it need not be documented. ‘Extra neural spread visualized’ and ‘Presence/absence of nerve swelling’ were also discussed and ultimately rejected, with several collaborators making the point that nerve swelling/extraneural spread themselves were not reliable signs relating to nerve injury. ‘Note on resistance to injection<15 psi’ was rejected on the basis that the majority of the expert panel did not have manometry available nor routinely measure injection pressures with some citing a lack of evidence for its benefit.

Documentation specific to neuraxial nerve block procedures

All but one of the items specific to neuraxial anesthesia were accepted to the final list. ‘Method used to secure catheter’ was added for round 2 following discussion. This proved to be somewhat contentious with many remarking that while it would be ideal to have ultrasound images in the patient’s record this comes with significant logistical issues, offers no safety benefit and even in medicolegal situations a single static image is of little use. There was a significant divide between USA and non-USA voters on this item, with 82% of USA voters agreeing to this standard in round 2 versus just 25% of non-USA voters. It was ultimately rejected however it will be interesting to see how this evolves in the future; the inclusion of images in the patient’s notes has become common practice among laparoscopic surgeons and endoscopists amongst others.

With regard to adequacy of the block for surgery, it was acknowledged that not all blocks are used for surgical anesthesia, and perhaps this item should have been altered to reflect this. Other collaborators made the point that a partial block requiring supplementation is not necessarily a failed block. ‘Post-block monitoring completed by ____/ handed over/off to ____ (e.g. recovery, PACU)’ was rejected as it was felt that this was beyond the scope of the project.

This study has several strengths. Seventy-seven international experts participated in the study exceeding the median number of 17 participants in other Delphi studies reported in the literature. A large number of experts were deliberately sought to minimize individual bias and provide a broad international perspective on this nuanced area. There was an excellent response rate with all 77 collaborators participating fully in the first 2 rounds and 50 taking part in round 3 despite the scheduling challenges associated with timezones. Voting anonymity was maintained throughout all rounds reducing the impact of dominant individuals, peer pressure, bias and to allow consideration of all opinions in a non-adversarial manner. Collaborator commentary was permitted and encouraged throughout the project allowing for a dynamic long list of suggested documentation components. Items could be added and/or revised based on collaborator commentary; this was well demonstrated during the round 3 live discussion where 4 items were consolidated into a single all-embracing item in response to real-time collaborator discussion. This flexibility yielded a more comprehensive final list of suggested documentation components that reflects the varied practice of regional anesthesia world-wide.

This study also has a number of limitations. While the expert panel was international, the majority of the collaborators were from Europe, followed by North America, and with a small number from Australia, New Zealand and Singapore. Our panel did not include any collaborators from South America, the Middle East, Asia or Africa, nor were there representatives from low- and middle-income countries. Thus, our suggested
documentation components may not be applicable in these contexts. A limitation of all Delphi studies is that any expert panel will be influenced by their own experience and personal practice, however as previously mentioned, the large number of experts in this project should minimize this effect. Another potential limitation arises from the small number of prior studies in this area. As a result, the long list formulation required significant input from the executive committee to generate what was felt to be complete list of documentation components. Twelve additional items were added to the long list originally derived from the literature review, and a further 8 were added during the Delphi process, which could represent a source of bias.

The practice of regional anesthesia is constantly evolving and as such this list of suggested documentation components requires regular review to remain current. It is hoped that this list might provide a framework for international regional anesthesia societies to produce guidelines for documentation standards in the near future. There is no single global standard of care. The practice of medicine and regional anesthesia vary dramatically across the world and documentation should rightly reflect local best practice.

Concerning areas for future research, these may include the formation of a standard block procedure note template for both electronic and paper medical records and standardizing post-block monitoring and follow-up documentation for regional anesthesia procedures including inpatient and ambulatory nerve catheters. Another evolving area that warrants future study is the utility of including digital ultrasound media within the patient’s record should this practice become more widespread.

The authors acknowledge that while attempts to improve documentation standards are necessary and well-intended, an excessive burden of notes may distract from patient care and can even lead to physician burnout. Although the final list of recommendations may seem extensive the majority will already be included in the routine documentation practice of most anesthesiologists. This is not intended to be an exhaustive list nor a legal standard of documentation but rather a consensus of useful items to document patient care.

CONCLUSION

By means of a modified Delphi process we have established an expert panel consensus on documentation in regional anesthesia. We hope adoption of our recommendations will facilitate physician workflow, education, quality improvement and research.

Author affiliations
1Department of Anaesthesia, Leeds Teaching Hospitals NHS Trust, Leeds, UK
2Department of Anaesthesia and Intensive Care, Letterkenny University Hospital, Letterkenny, Donegal, Ireland
3Department of Anesthesiology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
4Department of Anesthesiology, Fiona Stanley Hospital and Fremantle Hospitals, Perth, Western Australia, Australia
5Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
6Department of Anesthesiology, University Hospital of Lausanne, Lausanne, Switzerland
7Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
8Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
9Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California, USA
10Department of Anaesthesia, Intensive Care and Pain Medicine, St Vincent’s University Hospital, Dublin, Ireland
11Department of Anaesthesia, Waikato Hospital, Hamilton, New Zealand
12Department of Anaesthesia, Liverpool Hospital, University of New South Wales Faculty of Medicine, Sydney, New South Wales, Australia
13Department of Anaesthesia, Tallaght University Hospital, Dublin, Ireland
14Department of Anaesthesia and Pain Medicine, Gold Coast University Hospital, Gold Coast, Queensland, Australia
15Faculty of Medical Sciences, Unit of Pain Research and Treatment, Medical University of Silesia, Zabrze, Poland
16Department of Anaesthesia, Clinique Medipole Garonne, Toulouse, France
17Department of Anaesthesia and Intensive Care, Cluj-Napoca County Emergency Hospital, Cluj-Napoca, Romania
18Department of Anaesthesiology, Intensive Care and Pain Medicine, National Pirogov Memorial Medical University, Vinnysya, Ukraine
19Department of Anaesthesia and Pain Management, Royal Children’s Hospital Melbourne, Melbourne, Victoria, Australia
20Retired Consultant Anaesthetist, Worcester Royal Hospital, Worcester, UK
21Department of Anaesthesia, Mater Misericordiae University Hospital, Dublin, Ireland
22Department of Anaesthesiology, Duke University Medical Center, Durham, North Carolina, USA
23Department of Anaesthesia, Clinique Sainte Anne Saint Remi, Bruxelles, Belgium
24Department of Anaesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
25Department of Anaesthesia and Reanimation, Koc University Hospital, Istanbul, Turkey
26Department of Anaesthesiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
27Department of Anaesthesia, St Mary’s Hospital, Imperial College, London, UK
28Ultrasound Education Unit, University of Melbourne, Melbourne, Victoria, Australia
29Department of Anaesthesiology, Northeast Health Wangaratta, Wangaratta, Victoria, Australia
30Department of Anaesthesiology, University of Texas McGovern Medical School, Houston, Texas, USA
31Department of Anaesthesiology and Intensive Care, F D Roosevelt Teaching Hospital, Banska Bystrica, Slovakia
32Department of Anaesthesiology and Intensive Care Medicine, Cork University Hospital, Cork, Ireland
33School of Medicine, University College Cork, Cork, Ireland
34Department of Anaesthesia and Pain Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
35Department of Anaesthesiology, Perioperative and Pain Medicine and Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
36Department of Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
37Department of Anaesthesiology and Perioperative Medicine, The University of Alabama, Birmingham, Alabama, USA
38Department of Anaesthesia, Galway University Hospitals, Galway, Ireland
39Department of Anaesthesia, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
40Anesthesiology and Perioperative Care Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
41Department of Anaesthesiology, Perioperative and Pain Medicine, Stanford Health Care, Stanford, California, USA
42Department of Anaesthesia and Surgical Intensive Care, Changi General Hospital, Singapore
43Department of Anaesthesia, Hospital das Forças Armadas, Porto, Portugal
44Department of Anaesthesiology, Columbia University Irving Medical Center, New York, New York, USA
45Department of Anaesthesiology, Pain and Critical Care Medicine, Glasgow Royal Infirmary, Glasgow, UK
46School of Medicine, University of Glasgow, Glasgow, UK
47Department of Anesthesiology and Pain Management, University of Texas Southwest Medical Center, Dallas, Texas, USA
48Department of Anaesthesia, South Infirmary Victoria University Hospital, Cork, Ireland
49Department of Anaesthesia, Flinders Medical Centre, Adelaide, South Australia, Australia
50Department of Anaesthesiology, Craigavon Area University Teaching Hospital, Craigavon, UK
51Department of Anaesthesiology, Hospital of Traumatology and Orthopaedics, University of Latvia, Riga, Latvia
52Department of Anaesthesiology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
53Department of Anaesthesiology, Koç University Hospital, Istanbul, Turkey
54Department of Anesthesiology, Pain and Critical Care Medicine, Stanford University, California, USA
55Department of Anaesthesiology, Creta InterClinic Hospital, Hellenic Healthcare Group, Heraklion-Crete, Greece
56Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida, USA
57Department of Anaesthesia, Anaesthesia and Perioperative Medicine, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
58Faculty of Life Sciences and Medicine, King’s College London, London, UK
59Department of Anaesthesiology and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
60Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
61Department of Anaesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
Correction notice This article has been corrected since it was first published. The open access license has been updated to CC BY.

Twitter Hassan M Ahmed @HassanM3118046, Sanjib Adhikary @sanjibadhikary, Eric Albrecht @EdAlbrecht, Jan Boublik @janboublik MDPhD, Alvin Chuan @AlvinChuan, Dan Sebastian Dirzu @DanDirzu, Rajnish K Gupta @dr_rajgupta, Harold David Hardman @hdhardman_david, Jakub Hlasny @hlasnyjakub, Rebecca L Johnson @rjohnsonmd, Andrew Kenneth Lansdown @TheLansdowns, Clara Lobo @ClaraLobo, Alan James Robert Macfarlane @ajrmacfarlane, Peter Merjavy @PeterMerjavy, Peter Moran @PeterMoranPeter, Amit Pawa @amit_pawa, Anahi Perlas @PerlasAnahi, Kristopher M Schroeder @KristopherSch, Gary Schwartz @garyschwartzmd, Eric S Schwenk @ESchwenkMD and E M Louise Moran @LouiseMoran75

Acknowledgements This paper is supported by the ASRA Pain Medicine and the ESRA board of directors.

Contributors Study conception and design: HMA, BPA, GCC, JLB, MJ, EV, EMLM and AKW. Study conduct: HMA, BPA, GCC, JLB, MJ, EV and EMLM. Data analysis: BPA and GCC. Manuscript preparation: HMA, BPA, GCC, JLB, MJ, EV and EMLM. Manuscript revision: all authors. Manuscript approval: all authors. Manuscript guarantor: EMLM.

Funding The authors received a grant towards the cost of open access from The European Society of Regional Anaesthesia and Pain Therapy.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Institutional ethics committee approval was deemed unnecessary by Letterkeny University Hospital Ethics Committee in December, 2020.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request. Any data not in the online supplemental information are available on reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 United States license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Hassan M Ahmed http://orcid.org/0000-0001-5328-6039
Mark Johnson http://orcid.org/0000-0002-1503-8955
Eugene Viscusi http://orcid.org/0000-0003-0260-4396
Sanjib Adhikary http://orcid.org/0000-0001-7167-1184
Eric Albrecht http://orcid.org/0000-0001-6432-1311
Kelly Byrne http://orcid.org/0000-0002-7890-7265
Alvin Chuan http://orcid.org/0000-0003-4356-6525
Dan Sebastian Dirzu http://orcid.org/0000-0002-6730-7045
Dmytro Dmytroviiev http://orcid.org/0000-0001-6067-681X
Rajnish K Gupta http://orcid.org/0000-0003-3401-4737
Vivian H Y Ip http://orcid.org/0000-0001-6158-4415
Christina L Jeng http://orcid.org/0000-0003-2507-7015
Rebecca L Johnson http://orcid.org/0000-0002-1920-9774
Yean Chin Lim http://orcid.org/0000-0003-3679-7173
Alan James Robert Macfarlane http://orcid.org/0000-0003-3858-6468
Anthony T Machi http://orcid.org/0000-0001-8245-795X
Peter Merjavy http://orcid.org/0000-0001-6813-3641
Anahi Perlas http://orcid.org/0000-0002-8190-8314
Steven Porter http://orcid.org/0000-0002-8657-2004
Eric Schwenk http://orcid.org/0000-0003-3464-4149
Luc Sermeus http://orcid.org/0000-0003-3191-430X
Karthikeyan Srinivasan http://orcid.org/0000-0003-2833-1920
Kassiani Theodoraki http://orcid.org/0000-0003-4890-4642
Thomas Volk http://orcid.org/0000-0001-5175-7159
Sylvia H Wilson http://orcid.org/0000-0002-4747-6009
Glenn Woodworth http://orcid.org/0000-0002-1924-801X
E M Louise Moran http://orcid.org/0000-0001-8069-5786

REFERENCES
8 Safe Anaesthesia Liaison Group, Regional Anaesthesia UK. Stop before you block: campaign: supporting information. 2015.