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ABSTRACT
Background  Fascial plane blocks (FPBs) target 
the space between two fasciae, rather than discrete 
peripheral nerves. Despite their popularity, their 
mechanisms of action remain controversial, particularly 
for erector spinae plane and quadratus lumborum blocks.
Objectives  This narrative review describes the scientific 
evidence underpinning proposed mechanisms of action, 
highlights existing knowledge gaps, and discusses 
implications for clinical practice and research.
Findings  There are currently two plausible mechanisms 
of analgesia. The first is a local effect on nociceptors and 
neurons within the plane itself or within adjacent muscle 
and tissue compartments. Dispersion of local anesthetic 
occurs through bulk flow and diffusion, and the resulting 
conduction block is dictated by the mass of local 
anesthetic reaching these targets. The extent of spread, 
analgesia, and cutaneous sensory loss is variable and 
imperfectly correlated. Explanations include anatomical 
variation, factors governing fluid dispersion, and local 
anesthetic pharmacodynamics. The second is vascular 
absorption of local anesthetic and a systemic analgesic 
effect at distant sites. Direct evidence is presently lacking 
but preliminary data indicate that FPBs can produce 
transient elevations in plasma concentrations similar to 
intravenous lidocaine infusion. The relative contributions 
of these local and systemic effects remain uncertain.
Conclusion  Our current understanding of FPB 
mechanisms supports their demonstrated analgesic 
efficacy, but also highlights the unpredictability and 
variability that result from myriad factors at play. 
Potential strategies to improve efficacy include accurate 
deposition close to targets of interest, injections of 
sufficient volume to encourage physical spread by bulk 
flow, and manipulation of concentration to promote 
diffusion.

INTRODUCTION
Regional anesthesia is generally thought of as 
placing a needle into close proximity to a discrete 
nerve or plexus (originally guided by mechanical 
elicitation of paresthesia, then by neurostimulation, 
and now most commonly by ultrasound imaging) 
followed by injection of local anesthetic around 
these nerves. Fascial plane blocks (FPBs) are a rela-
tively new class of regional anesthesia techniques, 
distinguished by the fact that the target of needle 
insertion and local anesthetic injection is a compart-
ment (the ‘plane’) between two anatomically sepa-
rate layers of fascia and there is no attempt to locate 
individual nerves. Blockade of afferent nociceptive 
transmission nevertheless remains the ultimate goal.

This is not a new concept—long-established tech-
niques such as the landmark-guided ilioinguinal-
iliohypogastric and fascia iliaca blocks are essentially 
FPBs. Nevertheless, the ability to easily visualize 
and target fascial planes with ultrasound imaging 
has led to an explosion in the number of described 
FPBs, especially of the torso. Their popularity stems 
from their ease of performance, perceived safety 
(especially with regard to needle-nerve trauma), 
and ability to provide meaningful analgesia in a 
variety of clinical settings.1–11 However, there is 
controversy over how they produce their clinical 
effect,12–14 mainly because they do not behave like 
traditional regional anesthesia techniques. In partic-
ular, (1) dense neural blockade is rarely seen; (2) 
there is variability in the results obtained in indi-
vidual patients; (3) and the patterns of cutaneous 
sensory blockade often under-represent the anal-
gesia that is observed. The objectives of this article 
are to review the scientific principles and evidence 
that underpin the proposed mechanisms of action 
underlying the effect of FPBs, to identify the knowl-
edge gaps that exist, and to discuss the implications 
for clinical practice and research.

Dispersion of local anesthetic following injection 
into a fascial plane
The movement of fluid molecules occurs via two 
distinct processes. The first is bulk flow (also known 
as mass flow), where fluid moves as a ‘body’ of 
aggregated particles, driven by a pressure gradient. 
Bulk flow of fluid in human tissues is constrained 
by fascia, which at a macroscopic level are densely 
interwoven barriers of collagen fibers.15 The space, 
or plane, between layers is filled with adipose cells, 
collagen and elastic fibers of loose connective 
tissue, and a hydrated glycosaminoglycan matrix 
(ground substance). This plane is readily distended 
by the hydraulic pressure of fluid injection—the 
hydrodissection phenomenon familiar to practi-
tioners of ultrasound-guided regional anesthesia 
(figure  1). The pattern and limits of bulk flow 
within the plane are governed by physical forces 
that include the velocity and direction of injection, 
elastic recoil of the distended fascial plane, and the 
sliding movement of the fascial layers that occurs 
with subsequent muscular contraction and move-
ment. This last factor may explain the continued 
increase in distribution area over several hours, as 
has been observed with serial MRI scans following 
transversus abdominis plane (TAP) blocks in human 
volunteers (figure 2).16

The second process is diffusion, in which there 
is net movement of particles within a fluid medium 
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driven by a concentration gradient. Fascia is not a barrier to 
diffusion, as at the microscopic level, the pores between the 
interlinked collagen fibers render fascia freely permeable to local 
anesthetic drug molecules. Local anesthetic can therefore cross 
fascial layers even in the absence of macroscopic perforations.

There are thus three possible fates for local anesthetic mole-
cules injected into a fascial plane: (1) they spread out and remain 
within the interstitial compartment of the plane; (2) they disperse 
out of the plane into adjacent muscles or tissue compartments 
via diffusion or bulk flow through macroscopic openings; or 
(3) they diffuse into blood vessels and are transported within 
the vascular system to distant tissue sites. Consequently, the 
potential mechanisms of analgesic action of FPBs can be broadly 
divided into a local effect on nerves in the vicinity of injection, 
and a systemic effect resulting from vascular dispersion. The 
scientific basis, evidence, and areas of uncertainty surrounding 
these mechanisms are discussed in more detail.

Local analgesic effect mediated by spread within the interstitial 
compartment of the plane
The principal aim of FPBs is blockade of impulse generation and 
propagation in peripheral nerves. Almost all FPBs target clinically 

relevant nerves traveling within the fascial plane of injection. 
Examples include lateral cutaneous branches of the intercostal 
nerves innervating the axilla in the PECS2 and superficial 
serratus anterior plane block (figure 3),17 as well as branches of 
thoracoabdominal nerves innervating the muscles and skin of the 
anterior abdominal wall in the TAP and rectus sheath block.18 
Local anesthetic reaches these nerves by the process of bulk 
flow and, as with any other peripheral nerve block technique, 
proceeds to diffuse through the layers of epineurium, perineu-
rium, and endoneurium to block membrane ion channels and 
prevent the depolarization required for axonal action potential 
propagation.

This mechanism of action is largely undisputed, except for the 
observation that discernible cutaneous sensory block following 
FPBs may be either absent or incongruous with their recom-
mended clinical applications and evidence for benefit. For 
example, a detailed volunteer study of the lateral TAP block 
found that cutaneous sensory loss was highly variable in area, 
and spared large areas of the anterior abdomen in the majority of 
subjects.19 This variability has been demonstrated for other FPBs 
as well.20–23 Despite this unpredictability in cutaneous sensory 
blockade, FPBs remain clinically efficacious, as demonstrated 
by several meta-analyses.1 2 4–6 11 This has raised questions as 
to whether peripheral nerve blockade represents the principal 
mechanism of FPB analgesia in all settings. There are, however, 
several important considerations that serve to reconcile apparent 
contradictions in the extent of discernible cutaneous sensory 
blockade and clinically meaningful analgesia.

Figure 1  (A) Ultrasound image of the anterolateral chest over 
pectoralis major (PM) and pectoralis minor (Pm). The fascial layer 
demarcating the plane between pectoralis minor and serratus anterior 
(SA) muscle is shown by the white arrows. Note the multilamellar 
appearance of the layer. (B) Bulk flow of local anesthetic injection 
(illustrated by the block arrows) into the fascial plane has separated SA 
and Pm muscles. Local anesthetic will also gradually diffuse across the 
perimysium of the muscles (illustrated by the dotted arrows).

Figure 2  Progression with time in the visible areas of injectate spread 
in the transversus abdominis plane (TAP), measured on serial MRI scans, 
of lateral and subcostal (called ‘upper’ here) TAP blocks as reported by 
Børglum et al.16 Dotted line=subcostal TAP block with 15 mL. Dashed 
line=lateral TAP block with 15 mL. (adapted from Børglum et al16 with 
permission)

Figure 3  Cadaver specimen with the subcutaneous tissue removed. 
Lateral cutaneous branches (LCB) (white numbers) of the intercostal 
nerves emerge between the digitations of the serratus anterior (SA) 
muscle. Note the complex branching pattern and anastomoses between 
adjacent nerves that result in multisegmental sensory innervation 
of superficial tissues. The second and third LCB in this specimen 
anastomose to form the intercostobrachial nerve (ICBN). Other nerves 
in the axilla include branches of the brachial plexus: the medial 
brachial cutaneous nerve (MBCN), the long thoracic nerve (LTN) and 
the thoracodorsal nerve (TDN). All of these nerves will potentially be 
blocked by local anesthetic spread following injection into the fascial 
plane superficial to the serratus anterior muscle (red X indicates a 
commonly used location for performance of a superficial serratus 
plane block). LD, latissimus dorsi muscle; PM, pectoralis major muscle; 
SCN, supraclavicular nerves. (adapted from Woodworth et al17 with 
permission)
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Anatomical, technical, pharmacokinetic, and physiological factors 
contributing to variability
The first is that anatomical cutaneous innervation is more 
complicated than is commonly portrayed in textbooks, 
particularly over the torso. Nerves branch and anastomose 
with each other in a complex manner,24 25 and thus multi-
segmental innervation of any patch of skin is the rule rather 
than the exception.26 There is also contralateral overlapping 
innervation across the midline of the anterior torso, which 
speaks to the importance of bilateral blocks.27 This, together 
with expected interindividual anatomical variation, contrib-
utes to the patchy and unpredictable pattern of cutaneous loss 
observed in individuals receiving otherwise identical regional 
anesthetic blocks.19–22 28

Pharmacokinetic variability is another underappreciated 
consideration to be taken into account. In a unique study of eight 
human volunteers, Latzke et al used microdialysis to measure 
interstitial fluid concentrations of local anesthetic following a 
lateral TAP block with 20 mL 0.75% ropivacaine.29 Sampling 
was performed from probes placed 2 cm cranial and caudal to 
the TAP injection site, as well as at a distant site in the contra-
lateral thigh. The intersubject variation in ropivacaine concen-
trations in the vicinity of the TAP was extremely high, with a 
10 000-fold difference between the lowest and highest values 
recorded in subjects. Sensory block was not assessed in this study, 
although it is logical to assume that this would have varied in a 
corresponding manner. An inverse correlation between overall 
TAP and plasma ropivacaine concentrations led the authors to 

postulate that greater redistribution from the TAP occurs in 
some individuals, although the reasons why this might be so are 
unclear. These results are highly intriguing but further inves-
tigation is required, especially as the individual data from the 
study do not show a clear association between high TAP and low 
plasma concentrations or vice versa (figure 4). It is possible that 
technical error, for example, inconsistency in the precise place-
ment of the microdialysis probes or TAP injection, may have 
contributed to the wide data dispersion.

More importantly though, as noted in a recent editorial,30 
it would be unrealistic to expect truncal FPBs to achieve the 
same intensity and consistency of sensory neural blockade as 
ultrasound-guided peripheral nerve blocks of the limbs, in which 
generous doses of local anesthetic are precisely deposited around 
nerves of interest. Simple physics dictates that the further away 
local anesthetic is injected, the less of it will reach the target. 
This is compounded by the inherent variability in physical 
spread of injectate within the fascial plane, as evidenced by a 
2.5 to 6-fold difference between subjects in the MRI-visible area 
of injectate distribution following TAP blocks.16 A myriad of 
both technical performance (eg, exact site of injection, accuracy 
of deposition in plane vs intramuscular, direction of injection, 
volume injected, speed of injection) and physiological factors 
(eg, age-related tissue laxity, muscular and fascial contraction 
and movement, positioning, normal variation in musculoskeletal 
anatomy and the course taken by nerves) are likely to influence 
the pattern of bulk flow, and thus the mass of local anesthetic 
that reaches the target nerves. It is thus difficult to replicate the 

Figure 4  Graphs of ropivacaine concentrations over time adapted from the data of Latzke et al.29 These were measured in the interstitial 
milieu of the transversus abdominis plane (TAP) at two locations using a microdialysis technique, following a unilateral TAP block with 20 mL 
0.75% ropivacaine (150 mg). Ropivacaine concentrations were also measured in plasma, and in the muscle tissue of the contralateral thigh as a 
representation of distant tissue concentrations. Each colored line represents data from an individual volunteer subject (there are missing data for 
some measurements and subjects). Note the significant interindividual variability in TAP concentrations, which is much more marked compared with 
plasma concentration. Differences in redistribution of local anesthetic as an explanation for the variation in TAP concentration have been postulated, 
though this is not clearly evident from this small study of eight volunteers.
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same pattern of sensory block even when an FPB is performed by 
the same practitioner in the same subject, as shown by significant 
intraindividual variation in yet another volunteer study of the 
lateral TAP block.28

Non-cutaneous contributions to nociception
It is equally important to recognize that cutaneous sensory block 
is an imperfect surrogate for analgesia, as pain often arises from 
injury and inflammation of deeper musculoskeletal tissues. 
Sensory innervation of these different tissues is not always 
anatomically congruent, as evidenced by the distinction between 
dermatomes, myotomes, and sclerotomes.31 They also display 
different pain characteristics and treatment responses, which are 
attributed to significant neurobiological differences in the noci-
ceptive pathways.32–38 Muscles, ligaments, joint capsules, and 
bone are rich in sensory nerve endings which transduce physical 
stimuli but normally do not signal pain if these are within physi-
ological limits.33 35 These ‘silent nociceptors’ are upregulated by 
the inflammatory response to tissue injury, with resulting hyper-
algesia that manifests as local tenderness and pain on move-
ment.33 35 Local anesthetic injected into fascial planes close to 
the site of injury, and which subsequently diffuses through into 
the surrounding soft tissues, may conceivably inhibit firing of 
these nociceptors and produce analgesia similar to that achieved 
by surgical wound infiltration.39 The importance of introducing 
local anesthetic into the deeper tissue layers is highlighted by 
the superior analgesia provided by preperitoneal versus subcu-
taneous wound infiltration catheters in abdominal surgery, an 
effect which may even be comparable to that of epidural anal-
gesia.40 An anti-inflammatory action of local anesthetic, medi-
ated by inhibition of leucocyte chemotaxis and priming,41–43 may 
further attenuate the local hyperalgesic response.

Controversy also stems from the fact that some FPBs, such 
as the PECS113 and TAP block,19 appear to block primarily 
motor nerves. However, at least a third of fibers within a motor 
nerve are sensory and nociceptive, and transmit impulses from 
the afferents located within the tissues that it supplies.32 Muscle 
spasm is also a significant source of pain following certain 
surgeries (eg, breast reconstruction44 45); this is attributed to 
local ischemia secondary to vessel compression in the contracted 
muscles, with subsequent release of mediators that upregulate 
silent nociceptors.46 An important corollary, therefore, is that 
even if the putative target of FPBs is primarily motor nerves, 
the ensuing motor block may still contribute to analgesia by 
relieving muscle contraction and preventing the ischemic inflam-
matory response.47 48

Differential sensory block
Another reason why cutaneous sensory loss may not always be 
a definitive measure of neural blockade is that analgesia (mean-
ingful reduction of pain) can be achieved independently of 
complete anesthesia (absence of all sensation). This is known as 
differential block, a phenomenon consistently observed during 
the onset and regression of spinal anesthesia and manifesting as 
earlier onset and larger extent of loss of pinprick and tempera-
ture sensation versus light touch.49–51 Deliberate differential 
block can also be achieved in clinical practice if appropriately 
low concentrations of local anesthetic are applied to nerves.52 
The principle is routinely used in modern epidural analgesia53 
and continuous peripheral nerve blocks,54 and may also apply to 
truncal FPBs where the injected mass of local anesthetic is widely 
dispersed and diluted, and subject to the vagaries of distribu-
tion discussed above. While differential block in FPBs has yet to 

be systematically investigated, studies have nevertheless shown 
discrepancies in the extent of sensory loss between different 
testing modalities (eg, cold vs pinprick).20

The basis for differential block is the fact that different 
sensory receptors are served by different afferent fiber types, and 
the susceptibility of these fibers to local anesthetic conduction 
block varies.55 In general, nociception (transmitted by A-delta 
and C-fibers) is blocked ahead of light touch, pressure, and 
motor function. The small myelinated fibers of A-delta noci-
ceptors responsible for the transmission of ‘fast’ or ‘first pain’56 
(eg, pinprick) are more susceptible to conduction blockade than 
larger myelinated A-beta and A-alpha fibers which are respon-
sible for mechanosensation and proprioception, respectively.57 
The smallest unmyelinated C-fibers implicated in temperature 
sensation and ‘slow’ or ‘second pain’56 have a more nuanced 
response. Studies have shown that they are less susceptible to 
blockade by lidocaine compared with A-fibers.57 However, 
bupivacaine and ropivacaine (the agents employed most often 
in FPBs) consistently display preferential blockade of C-fibers 
versus A-delta fibers versus A-beta fibers (in that order) in both 
preclinical and clinical studies.52 58 59 This difference is attributed 
to the higher pKa and lipid solubility of bupivacaine and ropi-
vacaine compared with lidocaine, which facilitates intraneural 
diffusion and ion channel blockade. Susceptibility to conduc-
tion block is also enhanced in neurons that are actively firing, as 
might be the case for nociceptors in ongoing pain states. This is 
due to the increased affinity and binding of local anesthetic for 
open sodium channels, a phenomenon known as use-dependent 
block60 and one that is more marked in C-fibers.59

Sympathetic innervation and visceral pain
In the specific case of the quadratus lumborum block, it has 
been speculated that local anesthetic blockade of the sympa-
thetic innervation of the thoracolumbar fascia enveloping the 
quadratus lumborum muscle may contribute to analgesia in some 
undefined way.61 Here, however, we are unable to formulate a 
coherent or logical scientific explanation to support this argu-
ment. We believe the notion that sympathetic innervation plays 
an important role in pain or FPB analgesia is misplaced, and its 
origins can be traced to two main sources.

One is the condition formerly known as reflex sympathetic 
dystrophy, so named because of the association of neuropathic 
pain of the extremities with clinical features of sympathetic 
dysfunction. The name was revised to complex regional pain 
syndrome (CRPS) in part because the pathophysiology encom-
passes more than just autonomic dysregulation and sensitivity to 
catecholamines.62 63 Sympathetic blocks, in fact, are not always 
effective in CRPS.64 More importantly with regard to quadratus 
lumborum or erector spinae plane (ESP) blocks, any effect 
resulting from blockade of sympathetic nerve endings in the 
thoracolumbar fascia would apply only to pain emanating from 
the fascia itself (ie, back pain).

The second is the misconception that visceral pain is medi-
ated by autonomic neurons.65 In reality, sensory afferent neurons 
from thoracic and abdominal viscera are functionally separate 
from the sympathetic and parasympathetic efferents.66 67 Sensory 
afferents synapse with second-order neurons in the dorsal 
horn, whereas sympathetic efferents originate in the ventral 
horn, and each follows different supraspinal pathways. They 
both, however, share the same anatomical pathway through 
the peripheral nervous system—sensory and sympathetic 
neurons travel through the same ganglia, plexuses and nerves 
(figure 5). As a result, although ‘sympathetic’ blocks targeting 
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the intra-abdominal autonomic plexuses are used to success-
fully treat visceral pain, their therapeutic effect is achieved by 
blockade of the sensory afferents and blockade of autonomic 
efferents is responsible primarily for side effects (eg, diarrhea, 
hypotension).

For these reasons, blockade of sympathetic nerve endings 
within the thoracolumbar fascia thus seems implausible as a 
mechanism for analgesia of the thoracoabdominal wall and 
viscera provided by quadratus lumborum or ESP blocks.

Local analgesic effect mediated by spread into adjacent tissue 
compartments
Certain FPBs are also purported to exert an analgesic effect via 
local anesthetic penetration into muscle and tissue compart-
ments adjacent to the fascial plane of injection. These include 
the quadratus lumborum block,61 68 and paraspinal blocks such 
as the ESP, midpoint transverse process to pleura (MTP), and 
retrolaminar block.69 70 The only nerves that pass through the 
targeted plane in these FPBs are the branches of dorsal rami of 
spinal nerves, which innervate the posterior torso. Yet there is 
a substantial body of evidence from clinical trials showing that 
they provide effective thoracoabdominal analgesia, which from 
a mechanistic point of view must imply that local anesthetic is 
acting at sites other than the plane of injection. This could be 
mediated in part by a systemic effect from vascular absorption 
(discussed further below), but the main assertion is that there 
is local anesthetic spread into the thoracic paravertebral space 

where it acts on the ventral rami of spinal nerves. This has been 
demonstrated in anatomical and clinical studies (summarized in 
recent review articles61 71) but it remains a highly contentious 
point due to conflicting evidence from several cadaveric72–75 and 
volunteer/patient studies,23 76 and is largely responsible for most 
of the controversy that currently surrounds FPBs.

However, in the case of the ESP block at least, imaging studies 
in human subjects have confirmed that this is in fact possible and 
does occur.77 78 In one study, MRI scans performed 1 hour after 
a T10 ESP injection in six patients with chronic abdominal pain 
clearly demonstrated the presence of injectate within the thoracic 
paravertebral and proximal intercostal spaces (figure  6). This 
was accompanied by complete resolution of pain in all subjects 
and discernible sensory loss over the anterior abdominal wall.78 
It is likely that the intertransverse connective tissue forming the 
posterior boundary of the paravertebral space largely impedes 
bulk flow of local anesthetic injected into the ESP, which would 
explain why Visoiu and Scholz failed to visualize filling of 
the paravertebral space on thoracoscopy during the injection 
phase.79 However, local anesthetic can diffuse across this collag-
enous barrier to eventually exert a clinical effect on the spinal 
nerve rami and roots, resulting in a gradual onset and progres-
sion of analgesia and sensory block over time.79 80 There may 
also be a small amount of bulk flow through the macroscopic 
openings in this connective tissue layer that transmit perfo-
rating vessels and nerves.81 It is likely that only a fraction of 
the total volume of injected local anesthetic reaches the thoracic 

Figure 5  Simplified illustration of the visceral and sympathetic nervous system. Cell bodies of sympathetic neurons (green) are located in the 
anterolateral horn of T1–L2 spinal cord segments. Efferent fibers (cholinergic) pass by way of the ventral root to a white ramus communicans and 
then to the paravertebral sympathetic ganglia. They continue via splanchnic nerves (greater, lesser, and least) to prevertebral ganglia (eg, celiac 
ganglia). From here, multiple branches form autonomic plexuses (eg, celiac plexus) that supply terminal efferent fibers to the viscera. Adrenergic 
vasomotor efferents also leave the sympathetic ganglia to innervate blood vessels. Sensory afferent neurons from the viscera (blue) travel in the 
reverse direction along the same pathway as sympathetic efferent neurons but are functionally separate. The visceral sensory neurons enter the spinal 
nerve via white rami communicantes and converge with somatic sensory neurons. They both project onto second-order neurons in the dorsal horn of 
the spinal cord, and this viscerosomatic convergence is responsible for the phenomenon of referred pain. Visceral pain sensation may be blocked at 
the level of the celiac ganglion or plexus, or at the level of the spinal nerve and cord. However, blocking the latter site will also interrupt motor and 
somatic sensory function, which is generally undesirable. DRG, dorsal root ganglion. (Adapted from KJ Chin Medicine Professional Corporation)
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paravertebral space and ventral rami, which may explain the 
patchy and variable nature of cutaneous sensory block that has 
been reported. Nevertheless, given the preferential blockade 
of C-fibers by bupivacaine and ropivacaine,52 58 59 this may be 
sufficient to provide a degree of clinically meaningful analgesia. 
These considerations would apply to the MTP and retrolaminar 
block as well.

A similar, though less vociferous, controversy applies to the 
role of the serratus anterior plane block in thoracic surgery 
and blunt trauma. Its clinical efficacy has been demonstrated in 
multiple studies3 despite cadaveric evidence that local anesthetic 
spread is confined to lateral cutaneous nerves and does not reach 
the intercostal space and nerves.82 One explanation is that phys-
ical disruption of normal tissue architecture following trauma 
promotes local anesthetic penetration and spread through 
investing fascia to deeper structures and the intercostal space, as 
suggested by a cadaveric model of serratus anterior plane blocks 
in rib fractures.83 Another is the diffusion of local anesthetic 
into the injured chest wall muscles to block nociceptive nerve 
endings.

The evidence base for thoracic paravertebral spread in 
quadratus lumborum blocks is admittedly smaller and more 
equivocal at this time. Local anesthetic must physically travel over 
a greater distance to reach this space, and this was not borne out 
in a recent imaging study of injectate spread in patients.76 It may 
exert much of its effect instead through blockade of branches 

of L1 and T12 nerves, which is consistent with clinical studies 
demonstrating efficacy primarily for lower abdominal and hip 
surgery.84 85 Nevertheless, sensory changes consistent with low 
thoracic paravertebral spread have been demonstrated in volun-
teers22 and patients.86 Furthermore, quadratus lumborum blocks 
are a heterogenous group of techniques, and it is likely that the 
pattern and extent of spread will vary with the specific approach 
used.22 76 87 More research is needed to clarify these issues.

How much local anesthetic is required for neural conduction 
blockade?
It is clear from the preceding discussion that any local effect of 
FPBs in blocking neural conduction is predicated on dispersion 
of local anesthetic over relatively large distances to reach target 
nerves. Logically speaking, the greater the distance between a 
target nerve and site of injection, the smaller the mass of drug 
that will reach it, and thus a corresponding diminution in effect 
can be expected. The question is: at what point does this cease to 
be clinically meaningful? In most peripheral nerve blocks, only 
a minor fraction of injected local anesthetic is responsible for 
axonal conduction block,88 with the majority being absorbed into 
the vascular system over time.60 The perineural concentrations 
of lidocaine and bupivacaine required to achieve tonic block of 
action potential propagation are anywhere from 1/5th to 1/80th 
of typically injected concentrations of 2% (approximately 70 
mM) and 0.25% (approximately 7.7 mM), respectively55 89 It 
is therefore plausible that clinically relevant axonal conduction 
blockade is occurring even at the fringes of local anesthetic spread 
in FPBs, although the reduced concentration gradient may mean 
that diffusion speed and onset times will be correspondingly 
slower, and offset possibly earlier. One implication of this is that 
more concentrated local anesthetic solutions might contribute 
to better postoperative analgesia, as shown in one randomized 
controlled trial comparing equal volumes of 0.375% and 0.25% 
bupivacaine in ESP block for breast surgery.90 On the other 
hand, no difference was observed between 0.25% and 0.125% 
bupivacaine when used in TAP block for open inguinal hernia 
repair surgery,91 so this remains an area for further investigation.

Analgesia mediated by a systemic effect of local anesthetics
The other major theory that has been advanced to reconcile the 
analgesia provided by FPBs with the relative lack of outward 
signs of conventional neural blockade is a systemic effect that 
follows vascular absorption of local anesthetic. On the surface, 
this seems intuitive given the large local anesthetic volumes used 
in FPBs, and the relatively widespread use of intraoperative 
intravenous lidocaine infusion (IVLI) in improving postopera-
tive analgesia and recovery. However, this theory warrants more 
careful consideration, not least because the analgesic efficacy of 
IVLI is itself somewhat controversial.

Analgesic efficacy and mechanisms of action of IVLI
A recent Cochrane review update acknowledged that while 
IVLI does reduce early postoperative (1–4 hours) pain scores 
and opioid consumption, the authors were guarded in their 
conclusions about the overall clinical significance of the benefits 
attributed to IVLI.92 The analgesic effect is more marked in some 
surgery types and pain syndromes than others,92 93 and may be 
due to differences in the pathogenesis of pain (eg, inflammatory 
vs neuropathic, visceral vs somatic) and thus the impact that can 
be expected from IVLI. It is speculated that prolonged pain relief 
following peripheral nerve blockade in chronic pain can also be 
attributed, at least in part, to central analgesic local anesthetic 

Figure 6  MRI of the spine showing injectate spread 1 hour after 
injection of 30 mL of local anesthetic and gadolinium contrast at the 
T10 transverse process in a patient with chronic abdominopelvic pain. 
(A) Parasagittal view showing spread of injectate (white line arrows) to 
the erector spinae muscles (*), paravertebral space (bold arrow), and 
neural foramina (arrowheads). The facet joint and the inferior articular 
process are indicated by a black arrow and white asterisk, respectively. 
(B) Axial view at the level of the T11 vertebra. Injectate (line arrows) has 
penetrated throughout the erector spinae muscle (black asterisks). The 
arrowhead indicates the intervertebral neural foramen, where the dorsal 
root ganglion (DRG) of the spinal nerve is located. The inferior articular 
process is indicated by a white asterisk. (C) Another parasagittal view 
showing injectate within the posterior epidural space (line arrows). 
(D) Axial view at the level of the T10 vertebra. Injectate has spread to 
the intercostal space (line arrows). The neural foramen (arrowhead), 
paravertebral space (bold arrow), erector spinae muscle (black 
asterisks), and inferior articular process (white asterisk) are indicated. 
(adapted from Schwartzmann et al78 with permission from Philip Peng 
Educational Series)
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action,94 but this supposition is based largely on pharmacological 
principles and laboratory studies.

Multiple biologically plausible molecular mechanisms of 
action have been identified by in vitro and in vivo studies95–98; 
although it must be noted that not all of these occur at the plasma 
concentrations associated with therapeutic IVLI (1–5 mcg/mL).95 
These mechanisms have been comprehensively reviewed else-
where,95 96 99 but in brief, lidocaine interacts with voltage-gated 
ion channels (eg, sodium, potassium, and hyperpolarization-
activated cyclic nucleotide-gated (HCN)97 98 channels) to modu-
late action potential generation, depolarization-dependent 
neurotransmitter release, and oscillatory neuronal activity, and 
interacts with ligand-gated ion channels (eg, transient receptor 
protein and N-methyl-D-aspartate (NMDA) receptors) as well 
as G protein-coupled receptors such as nicotinic and musca-
rinic acetylcholine receptors. These interactions can poten-
tially modulate the activity of nociceptive pathways at several 
different sites. In the periphery, plasmaborne lidocaine could 
block action potential generation or propagation at nerve 
endings and axons, as occurs with intravenous regional anes-
thesia. The concentrations achieved with IVLI are insufficient 
to achieve normal conduction blockade100 but may be suffi-
cient to inhibit the ectopic discharges associated with injured 
axons.95 The peripheral contribution to analgesia may also 
be mediated by an anti-inflammatory action related to inhibi-
tion of neutrophil chemotaxis and priming.41 42 An additional 
important site of action for IVLI may be in the central nervous 
system.101 In the dorsal horn of the spinal cord, lidocaine blocks 
the depolarization-dependent release of neurotransmitters at 
presynaptic terminals, and through effects on glutaminergic 
(NMDA) and G protein-coupled receptors may inhibit the 
central sensitization that contributes to secondary hyperalgesia 
in acute postoperative pain.102 Supraspinal mechanisms of anal-
gesia include blockade of HCN channels which are responsible 
for the hyperpolarization-activated mixed cation current, Ih or 
‘h’ current.103 In the central nervous system, Ih serves important 
‘pacemaker’ functions in the generation of neuronal oscilla-
tions associated with different conscious states as well as in the 
determination of different action potential firing modes. The 
ventrobasal thalamus, which is particularly rich in HCN chan-
nels, functions as a primary relay station for somatosensory and 
nociceptive transmission,104 and has a central role in incisional 
hyperalgesia.105 Systemic lidocaine at therapeutic concentrations 
inhibits the Ih current in thalamocortical neurons97 and this may 
contribute to the reduced perception of painful stimuli.

Are the systemic effects of long-acting local anesthetics similar to 
that of lidocaine?
Two questions must be asked before the analgesic mechanisms 
of IVLI can be extrapolated to FPBs. The first is whether we can 
expect the other amide local anesthetics to have a similar systemic 
analgesic effect as lidocaine, considering that bupivacaine and 
ropivacaine are almost always employed in FPBs. Their toxicity 
profile precludes therapeutic studies of intravenous infusion and 
the nearest parallel in clinical practice is the successful use of 
these drugs in intravenous regional anesthesia.106 107 It is of note, 
however, that this reflects only peripheral, and not central mech-
anisms of actions. Unlike lidocaine, bupivacaine and ropivacaine 
are chiral molecules, and stereoselectivity for sodium and potas-
sium channels has been demonstrated, with levorotatory isomers 
exhibiting significantly lower affinity.108 Nevertheless, at equi-
potent doses, any ion channel-mediated central analgesic effects 
are expected to be similar. Non-stereoselective interactions at 

cholinergic, serotoninergic, and NMDA receptors have also been 
demonstrated,109 110 which support modulation of nociceptive 
signaling at the level of dorsal horn neurons. There also appear 
to be minimal interdrug differences in the inhibitory effects 
of local anesthetics on neutrophil function and the immune 
response, indicating that they have similar anti-inflammatory 
effects.43 111 112 At this time, it is therefore reasonable to expect 
that bupivacaine and ropivacaine will exert systemic analgesic 
effects comparable to that of lidocaine.

Local anesthetic plasma concentration following FPBs
The second question is whether FPBs achieve and sustain clin-
ically relevant plasma concentrations of local anesthetic. In 
general, changes in plasma concentration follow a biphasic 
pattern/profile with a fast phase of redistribution that leads to 
an early peak concentration (Cmax) and then a slower phase 
of elimination.113 The elimination half life is prolonged in the 
elderly114 and obese,115 slowing the decline in plasma concen-
tration. The Cmax following FPBs is proportional to the dose 
administered.113 Bilateral TAP block with 400 mg lidocaine 
(average dose by body weight of 7.3 mg/kg) resulted in Cmax 
ranging from 2.7 to 5.5 mcg/mL (mean of 3.6 mcg/mL) and 
mean plasma concentration at 2 hours of approximately 2 mcg/
mL, which is within the range of 1–5 mcg/mL associated with 
therapeutic IVLI. On the other hand, a unilateral ESP block with 
lidocaine 3.5 mg/kg (175–350 mg) produced Cmax ranging from 
1.2 to 3.8 mcg/mL (mean of 2.6 mcg/mL), but within 2 hours, 
the mean plasma concentration had fallen below 1 mcg/mL.116

It is unclear what minimum duration of IVLI exposure is 
required for durable physiological changes in pain transmission, 
transduction, and modulation. Nevertheless, in a recent meta-
analysis of IVLI, the minimum average duration of infusion was 
60 min, and in most studies exceeded 2 hours. Single-injection 
FPBs using local anesthetic doses close to maximum recom-
mended limits are therefore capable of producing extended 
plasma concentration profiles similar to that of intraoperative 
IVLI. If a continuous local anesthetic infusion is initiated, this 
will prevent the decline in total plasma concentration, and in 
fact a gradual increase over time is observed.115 117 This increase 
is balanced out by postoperative increases in the acute-phase 
protein alpha-1 acid glycoprotein, which has a high binding 
affinity for local anesthetic molecules, and the net result is that 
free local anesthetic plasma concentrations remain relatively 
constant.117 118

Several other factors must be considered apart from dose. 
Systemic absorption and actual plasma concentration achieved is 
dependent on physicochemical characteristics of the drug (lipo-
philicity, protein binding, pKa) which determine binding to the 
tissues at the site of injection, as well as the composition and 
vascularity of the site of injection. The plasma concentration 
achieved by a given dose will therefore vary for different local 
anesthetics and different FPBs.113 There is also a degree of inter-
individual variability, with threefold variations observed in Cmax 
and area under the concentration-time curves (figure 7).115 116 119 
Finally, any distant effect site tissue concentrations of local anes-
thetics will also vary depending on both free plasma concen-
tration and many of the same factors that determine vascular 
uptake from the injection site.29

Relative contributions of local and systemic effects to 
analgesia in FPBs
At the current time, it is difficult to disentangle the relative 
contributions of neural conduction blockade from the systemic 
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effect of local anesthetics, and to assign primacy to one or the 
other. Their relative importance may depend on the etiology of 
the pain syndrome being treated, as well as the specific tech-
nique of FPB being used. FPBs that target peripheral nerves 
in the thoracic or abdominal wall will not block visceral noci-
ceptive pathways, and any visceral analgesia ascribed to them 
may be due to a systemic effect instead.120 Systemic absorption 
may also be more significant in scenarios where higher doses or 
continuous infusions are administered that promote and prolong 
higher plasma concentrations, or where the neural targets avail-
able for direct action are dispersed further away from the site 
of injection. As an illustration, randomized controlled trials 
have compared the analgesic efficacy of IVLI and FPBs (TAP121 
and quadratus lumborum block122) in laparoscopic abdominal 
surgery and found no difference. At the same time, the analgesic 
efficacy of chest wall FPBs in breast surgery (where unilateral 
blocks and lower doses are the rule rather than the exception) 
has been clearly demonstrated1 2; whereas no such effect has 
been observed with IVLI.123–125 One possible explanation is that 
there is a much larger visceral component of pain in laparoscopic 
abdominal surgery that is not impacted by sensory blockade of 
the abdominal wall, whereas postoperative pain following breast 
surgery largely emanates from superficial tissues that are readily 
anesthetized by FPBs. Abdominal surgery also generally requires 
bilateral, rather than unilateral, blocks, and the larger local anes-
thetic dose may contribute to a greater systemic effect.

Clinical implications and future directions for research
The weight of current clinical evidence supports a beneficial 
analgesic effect for FPBs in various pain syndromes.1–10 It is 
increasingly clear, however, that the magnitude of this benefit 
in individual patients can be unpredictable. Much of this can be 
ascribed to the variability in technical performance, in local anes-
thetic spread within the fascial plane, and in systemic uptake into 
the vascular system and distant tissues, all of which ultimately 
affect the local anesthetic concentration and mass available to act 
at therapeutic target sites. The factors underlying interindividual 
variability are not completely understood and there are as yet 
no definitive data on how to improve the consistency of anal-
gesia with FPBs. Nevertheless, based on the preceding discus-
sion, several logical strategies may be derived that are worthy of 
further systematic investigation.

The first is to deposit local anesthetic closer to the target structures 
of interest wherever possible. As an example, rectus sheath blocks 
or subcostal TAP blocks are clearly better choices than lateral TAP 
blocks in supraumbilical midline abdominal incisions.126 Careful 
consideration should also be given to local anesthetic dosing. While 
higher volumes will theoretically promote bulk flow and fascial 
plane spread over a greater area, this does not always hold true16 
and it may be more important to divide this higher volume between 
multiple injection sites rather than at a single one.16 127 128 Manip-
ulating local anesthetic concentrations could potentially influence 
diffusion and the pharmacodynamics of conduction block, but the 
evidence for benefit is presently equivocal.90 91 Delivering a higher 
overall mass of local anesthetic will also increase plasma concentra-
tions and any systemic analgesic effect. However, it goes without 
saying that preventing local anesthetic systemic toxicity should still 
be the foremost priority, and maximum recommended doses must 
be strictly adhered to. The addition of epinephrine will reduce 
peak plasma concentrations and is recommended.129 It should be 
noted that most of the available pharmacokinetic data pertain to 
the TAP block and more studies of the other FPBs are required. 
As with peripheral nerve blockade, incorporating other local anes-
thetic additives such as dexamethasone130 131 and dexmedetomi-
dine132–135 may enhance the analgesic effect of single-injection 
FPBs; but it is not clear as yet if this is primarily a systemic effect, in 
which case intravenous administration should be equally effective. 
Finally, continuous catheter techniques of FPB may be beneficial in 
maintaining therapeutic local anesthetic concentrations in both the 
fascial plane and systemic circulation, and might serve to prolong 
both local conduction block and systemic analgesia. Although an 
intermittent bolus dosing regimen would seem to be an intuitive 
choice over continuous infusion in terms of promoting fascial plane 
spread, the limited evidence currently available suggests that anal-
gesic efficacy is similar.136–138 Further research is necessary to reach 
a definitive answer.

CONCLUSION
This article represents our subjective attempt at synthesizing the 
clinical evidence for the mechanisms of analgesia provided by 
FPBs, and at reconciling conflicting opinions through logical 
thought experiments based on this evidence and accepted scien-
tific principles and our current understanding of the basic science 
of nociception and local anesthetic pharmacology. To this end, 

Figure 7  Arterial and venous plasma concentrations of levobupivacaine over time following a unilateral lateral transversus abdominis plane (TAP) 
block with 20 mL 0.25% levobupivacaine (50 mg), with and without the addition of 5 mcg/mL epinephrine (E). The median values are indicated 
by the thicker bold lines; other lines show individual measurements in each human volunteer. Note the high degree of interindividual variability in 
concentration values, especially where epinephrine was not added (dashed lines). (adapted from Corvetto et al119 with permission)
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we have summarized the firmly established facts and the assump-
tions that await definitive proof (table 1). At this time, the two 
most plausible mechanisms of analgesia underlying FPBs are (1) 
a localized action on nociceptors and neurons in the vicinity of 
the site of injection within the fascial plane, mediated by the 
processes of bulk flow and diffusion; and (2) vascular absorption 
of local anesthetic leading to a systemic effect similar to that 
described for IVLI. The relative importance of their contribu-
tion remains uncertain. In the mean time, as we await the results 
of further research, the pragmatic approach is to accept that 
analgesic efficacy may be unpredictable in any given individual, 
and thus to always use FPBs as part of a multimodal analgesic 
strategy. On the other hand, their favorable benefit-risk profile 
and relative ease of performance make them well suited to incor-
poration into clinical pathways of enhanced recovery and a more 
broad-based model of care.
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Table 1  The current state of knowledge on mechanisms of analgesia in fascial plane blocks
What is known What is uncertain

►► Nerves run in and through fascial planes.
►► LA spreads in fascial planes and can achieve sufficiently high concentrations for neural 

conduction blockade.
►► LA can spread out of fascial planes into adjacent tissue compartments.
►► Neural conduction block requires only relatively small amounts of LA.
►► Different nerve fiber types have different sensitivities to LA.
►► Clinically significant blockade of nociceptive transmission can be achieved without 

complete sensory or motor blockade.
►► FPBs do not always result in expected patterns of cutaneous sensory blockade.
►► Pain from surgery or trauma originates from cutaneous tissues and deeper tissues, 

including muscle, connective tissue, and bone.
►► FPBs produce peak plasma lidocaine concentrations in the range associated with 

therapeutic intravenous lidocaine infusion.
►► Bupivacaine, ropivacaine, and lidocaine have broadly similar mechanisms of action and 

receptor interactions.

►► The degree to which cadaveric studies of injectate spread correspond to injectate spread and clinical 
effect in living human subjects.

►► Determinants of LA spread within and beyond fascial planes in individual patients.
►► Determinants of vascular absorption and LA plasma concentration in individual patients.
►► The exact influence of volume, concentration and mass of LA on clinical efficacy of FPBs.
►► The extent to which FPBs block nociception from deeper musculoskeletal tissues.
►► The contribution of motor nerve blockade to analgesia in certain pain syndromes.
►► If equipotent doses of intravenous bupivacaine and ropivacaine have similar systemic analgesic effects 

to intravenous lidocaine.
►► If the plasma concentrations of bupivacaine and ropivacaine resulting from FPBs are sufficient to 

produce clinically significant systemic analgesia.
►► The molecular mechanisms of LA action that are directly relevant to the clinical analgesia associated 

with FPBs and different pain syndromes.
►► The relative contribution of localized and systemic effects of LA to clinical analgesia in FPBs.
►► If LA additives in FPBs consistently improve clinical analgesia and whether this is primarily mediated by 

a local or systemic effect.

FPB, fascial plane block; LA, local anesthetic.
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