Article Text

Download PDFPDF
Inhibition of the glutamatergic PVT-NAc projections attenuates local anesthetic-induced neurotoxic behaviors

Abstract

Introduction Local anesthetic-induced neurotoxicity contributes to perioperative nerve damage; however, the underlying mechanisms remain unclear. Here, we investigated the role of the paraventricular thalamus (PVT)-nucleus accumbens (NAc) projections in neurotoxicity induced by ropivacaine, a local anesthetic agent.

Methods Ropivacaine (58 mg/kg, intraperitoneal administration) was used to construct the local anesthetic systemic toxicity (LAST) mice model. We first identified neural projections from the PVT to the NAc through the expression of a retrograde tracer and virus. The inhibitory viruses (rAAV-EF1α-DIO-hm4D(Gi)-mCherry-WPREs: AAV2/retro and rAAV-CaMKII-CRE-WPRE-hGh: AAV2/9) were injected into the mice model to assess the effects of the specific inhibition of the PVT-NAc pathway on neurological behaviors in the presence of clozapine-N-oxide. The inhibition of the PVT-NAc pathway was evaluated by immunofluorescence staining of c-Fos-positive neurons and Ca2+ signals in CaMKIIa neurons.

Results We successfully identified a circuit connecting the PVT and NAc in C57BL/6 mice. Ropivacaine administration induced the activation of the PVT-NAc pathway and seizures. Specific inhibition of NAc-projecting CaMKII neurons in the PVT was sufficient to inhibit the neuronal activity in the NAc, which subsequently decreased ropivacaine-induced neurotoxicity.

Conclusion These results reveal the presence of a dedicated PVT-NAc circuit that regulates local anesthetic-induced neurotoxicity and provide a potential mechanistic explanation for the treatment and prevention of LAST.

  • Neurotoxicity Syndromes
  • Anesthesia, Local
  • Animal Experimentation

Data availability statement

Data are available in a public, open access repository. Data are available upon reasonable request. All processed data used in this study can be obtained from the corresponding author on reasonable request.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.