Peripheral nerve block anesthesia/analgesia for patients undergoing primary hip and knee arthroplasty: recommendations from the International Consensus on Anesthesia-Related Outcomes after Surgery (ICAROS) group based on a systematic review and meta-analysis of current literature ======================================================================================================================================================================================================================================================================================== * Stavros G Memtsoudis * Crispiana Cozowicz * Janis Bekeris * Dace Bekere * Jiabin Liu * Ellen M Soffin * Edward R Mariano * Rebecca L Johnson * George Go * Mary J Hargett * Bradley H Lee * Pamela Wendel * Mark Brouillette * Sang Jo Kim * Lila Baaklini * Douglas S Wetmore * Genewoo Hong * Rie Goto * Bridget Jivanelli * Vassilis Athanassoglou * Eriphili Argyra * Michael John Barrington * Alain Borgeat * Jose De Andres * Kariem El-Boghdadly * Nabil M Elkassabany * Philippe Gautier * Peter Gerner * Alejandro Gonzalez Della Valle * Enrique Goytizolo * Zhenggang Guo * Rosemary Hogg * Henrik Kehlet * Paul Kessler * Sandra Kopp * Patricia Lavand'homme * Alan Macfarlane * Catherine MacLean * Carlos Mantilla * Dan McIsaac * Alexander McLawhorn * Joseph M Neal * Michael Parks * Javad Parvizi * Philip Peng * Lukas Pichler * Jashvant Poeran * Lazaros Poultsides * Eric S Schwenk * Brian D Sites * Ottokar Stundner * Eric C Sun * Eugene Viscusi * Effrossyni Gina Votta-Velis * Christopher L Wu * Jacques YaDeau * Nigel E Sharrock ## Abstract **Background** Evidence-based international expert consensus regarding the impact of peripheral nerve block (PNB) use in total hip/knee arthroplasty surgery. **Methods** A systematic review and meta-analysis: randomized controlled and observational studies investigating the impact of PNB utilization on major complications, including mortality, cardiac, pulmonary, gastrointestinal, renal, thromboembolic, neurologic, infectious, and bleeding complications. Medline, PubMed, Embase, and Cochrane Library including Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, NHS Economic Evaluation Database, were queried from 1946 to August 4, 2020. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to assess evidence quality and for the development of recommendations. **Results** Analysis of 122 studies revealed that PNB use (compared with no use) was associated with lower ORs for (OR with 95% CIs) for numerous complications (total hip and knee arthroplasties (THA/TKA), respectively): cognitive dysfunction (OR 0.30, 95% CI 0.17 to 0.53/OR 0.52, 95% CI 0.34 to 0.80), respiratory failure (OR 0.36, 95% CI 0.17 to 0.74/OR 0.37, 95% CI 0.18 to 0.75), cardiac complications (OR 0.84, 95% CI 0.76 to 0.93/OR 0.83, 95% CI 0.79 to 0.86), surgical site infections (OR 0.55 95% CI 0.47 to 0.64/OR 0.86 95% CI 0.80 to 0.91), thromboembolism (OR 0.74, 95% CI 0.58 to 0.96/OR 0.90, 95% CI 0.84 to 0.96) and blood transfusion (OR 0.84, 95% CI 0.83 to 0.86/OR 0.91, 95% CI 0.90 to 0.92). **Conclusions** Based on the current body of evidence, the consensus group recommends PNB use in THA/TKA for improved outcomes. Recommendation: PNB use is recommended for patients undergoing THA and TKA except when contraindications preclude their use. Furthermore, the alignment of provider skills and practice location resources needs to be ensured. Evidence level: moderate; recommendation: strong. * nerve block * regional anesthesia * acute pain * treatment outcome * postoperative complications ## Introduction Total hip and knee arthroplasties (THA/TKA) are among the most common surgeries in the developed world1 with large increases projected as the population ages.2 Despite representing value-based solutions to end-stage arthritis,3 THA/TKA patients are at risk for serious complications of major organ systems.4 The identification of risk-modifying, perioperative interventions has therefore become a clinical priority. Besides the well-established intrinsic benefits of regional anesthesia,5 a growing body of evidence has indicated that anesthetic technique and in particular peripheral nerve blockade (PNB) may favorably influence perioperative outcome in terms of serious complications. Here, evidence from randomized controlled trials (RCTs) has been complemented by large population-based data because of the typical lack of precision when investigating the occurrence of harm.6–9 Observational evidence is well established in the context of serious harm because such complications are rare and often not captured during the follow-up of RCTs.10 11 In such settings issues of imprecision, indirectness, or inapplicability may prevent RCT’s from providing high-quality evidence in respect to adverse, unexpected events.12 13 The current analysis is a follow-up of a previous systematic review by the ICAROS group (International Consensus on Anaesthesia-Related Outcomes after Surgery) recommending neuraxial anesthesia for reduced complications in THA/TKA.14 ### Objective Recognizing the intrinsic benefits of PNBs, the objective was to address the impact of PNB use on serious perioperative complications.11 The ICAROS group therefore (1) conducted a systematic literature review with meta-analysis, (2) graded the level of evidence quality and (3) developed clinical practice recommendations. Given a relatively low PNB utilization in general,15 findings from this project are likely to profoundly impact on perioperative practice. ## Methods ### Consensus group The ICAROS group was comprised 57 individuals with extensive expertise in perioperative research and care of the orthopedic patient. The group was expanded from its original roster to maximize the collective expertise, including anesthetists, orthopedic surgeons, healthcare outcomes and quality researchers, administrators, librarians, and methodologists from North America, Europe, and Oceania representing more than 20 nationalities and practicing in over 10 countries. A 10-member steering committee was tasked with overseeing day-to-day project aspects. ### Study plan and healthcare question According to the prespecified healthcare question, a systematic review and meta-analysis were performed to investigate the impact of PNB utilization on the occurrence of complications in patients undergoing THA/TKA. This is important because clinical recommendations should consider both, benefit and harm.10 As serious complications are relatively rare and are often not captured in RCTs, observational evidence was required to complement randomized evidence.10 12 16 The study protocol was registered on the International Prospective Register of Systematic Reviews PROSPERO (protocol number: [CRD42018099935](https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=99935)).17 ### Healthcare questions posed to the consensus group * Does the use of a PNB influence postoperative complications in patients undergoing THA? * Does the use of a PNB influence postoperative complications in patients undergoing TKA? Outcomes of interest comprised major complications, considered critical to the patients postoperative health condition: inpatient and all-cause mortality, cardiac complications (without myocardial infarction (MI)), MI, pulmonary complications, respiratory failure, gastrointestinal and renal complications, acute renal failure, thromboembolism (deep venous thrombosis and pulmonary embolism), postoperative cognitive dysfunction, delirium, stroke, any systemic infectious complications, surgical site infections, blood loss, and transfusion requirements (both binary and in milliliters). Outcomes accounting for resource utilization included length of hospital stay (LOS), critical care admission, and cost of care. Outcome composition is detailed in online supplemental table A1. ### Supplementary data [[rapm-2021-102750supp001.pdf]](pending:yes) ### Study intervention and comparator The study intervention, anesthesia with PNB use, comprised lumbar plexus block, psoas compartment nerve block, paravertebral block, femoral nerve block, fascia iliaca compartment block, three in one block (including the femoral, obturator, and lateral cutaneous nerves), sciatic nerve block, lateral femoral cutaneous nerve block, and adductor canal block. The comparator was any anesthesia without PNB use. This involved systemic analgesia, intravenous analgesia, patient-controlled analgesia, intravenous patient-controlled analgesia, local infiltration analgesia (LIA), and periarticular local anesthetic infiltration. ### Selection criteria Based on the defined patient, intervention, comparator, and outcome (PICO) question, eligible studies included RCTs and observational prospective or retrospective studies of adult patients undergoing elective THA and TKA (in English language). Exclusion criteria included patients under 18 years of age and case reports. ### Search strategy A systematic literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search strategy, including Medical Subject Headings (MeSH), keywords, and controlled vocabulary terms, was crafted and validated by the expert group in collaboration with two institutional librarians according to the healthcare question. Medline, PubMed, Embase, and the Cochrane Library including Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Cochrane Methodology Register, Health Technology Assessment Database, NHS Economic Evaluation Database, were queried from database inception (1946) to May 17, 2018 and subsequently repeated to include August 4, 2020 for a complete and up to date evidence synthesis. The full search strategy is reported in online supplementarl materials and can be found in online supplemental appendix A1. The search yielded 8326 studies. In addition to the electronic search, a manual search of previously published systematic reviews was performed for the purpose of completeness. ### Study identification and data extraction After removal of duplicates, abstracts of 5884 studies were extracted and imported into the Covidence webtool, a comprehensive framework facilitating abstract screening, full-text review, data extraction, and quality assessment.18 Each step was performed independently by two reviewers, including a third reviewer for disagreements. Extracted data were categorized according to prespecified outcomes and the preliminary risk of bias within individual studies was assessed according to the Cochrane Risk of Bias Tool for RCTs and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool for non-randomized studies of interventions, respectively.19 The flow chart is presented in figure 1. ![Figure 1](http://rapm.bmj.com/https://rapm.bmj.com/content/rapm/early/2021/08/24/rapm-2021-102750/F1.medium.gif) [Figure 1](http://rapm.bmj.com/content/early/2021/08/24/rapm-2021-102750/F1) Figure 1 Flowchart. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses. ### Quantitative analysis To provide estimates of intervention effects,20 RCT and observational data were pooled by meta-analysis. Review Manager version 5 was used to facilitate data analysis and graphic presentation.21 Summary effect estimates for each outcome (ORs and 95% CIs) with heterogeneity (I2 statistic) were provided. For binary outcomes, group-specific risk was presented in events per 1000 while the relative effect was presented in ORs. For continuous variables, the effect was presented as mean difference. #### Primary analysis Effect estimates for the occurrence of critical complications with and without PNB utilization in THA and TKA, respectively. #### Secondary analyses * Subgroup analysis based on study type, stratifying by RCT and observational evidence. * Subgroup analysis based on primary anesthesia technique, investigating potential differences in PNB effects based on the use of general anesthesia (GA), neuraxial anesthesia (NA), or a combination thereof as the primary anesthetic technique. (table 1) For this purpose, THA and TKA populations were merged to assure an adequate sample size. In general, primary anesthetic techniques were matched in the intervention and comparison groups. Effect estimates comparing outcomes were stratified by the following groups: * GA only with and without PNB use. * GA+NA with and without PNB use. * Any study including GA, regardless of NA (sum of GA only and GA+NA) with and without PNB use. * NA only with and without PNB use. * Sensitivity analysis investigating the potential impact of clinical enhanced recovery after surgery (ERAS) pathways.22 23 * Sensitivity analysis accounting for possible prognostic imbalance due to changes in the utilization of perioperative thromboembolic prophylaxis protocols (as performed in the previous project) was not necessary as all included studies were published after the common establishment of respective perioperative measures.23 View this table: [Table 1](http://rapm.bmj.com/content/early/2021/08/24/rapm-2021-102750/T1) Table 1 Subgroup analysis based on primary anesthesia technique ### Qualitative analysis The GRADE system was used with the aim to provide meaningful evidence summaries and recommendations for the practice of evidence-based treatment at the point of care.24 25 This methodology of rating the quality of evidence and grading the strength of recommendations, has been widely adopted for the purpose of providing high-quality summaries of research evidence in systematic reviews and for standardized guideline development.26 GRADE offers a comprehensive framework allowing for a systematic and transparent assessment of the quality of the body of evidence as it relates to each individual outcome. The quality of evidence is specified in four levels of certainty (high, moderate, low, and very low) according to explicit criteria including, the seriousness of risk of bias as it affects an individual outcome across all contributing studies19 the seriousness of heterogeneity, imprecision, indirectness, and publications bias (funnel plots), all analyzed in their bearing and severity on each individual outcome, respectively.25 The rationale for upgrading the quality of evidence included large effect size, a dose–response relationship, or plausible confounders that would decrease an apparent treatment effect.27 Using the GRADEpro software package,28 final results including the pooled estimates of effect and the quality of evidence were presented in the summary of findings tables (tables 2 and 3 for THA and TKA, respectively). View this table: [Table 2](http://rapm.bmj.com/content/early/2021/08/24/rapm-2021-102750/T2) Table 2 GRADE summary of findings for total hip arthroplasty View this table: [Table 4](http://rapm.bmj.com/content/early/2021/08/24/rapm-2021-102750/T3) Table 4 The perioperative impact of anesthesia technique with or without peripheral nerve block use in total hip arthroplasty ### Recommendations According to GRADE, critical factors beyond the quality of evidence include the balance between benefit and harm, patient values and preferences, resource considerations, and issues pertaining to feasibility, equity, and acceptability of recommendations.20 29 The balance between desirable and undesirable outcomes and the application of patients’ values determines the direction of the recommendation. These factors, along with the quality of evidence, resource implications, and clinical feasibility considerations determine the strength of recommendations (strong/weak).20 24–26 ### Modified Delphi process and consensus After completion of the analyses, two cohorts of participants were tasked with summarizing the evidence, formulating conclusions, and suggesting recommendations. This work was distributed in the form of white papers for THA and TKA, respectively. White papers together with detailed analysis data files and summary tables of results were distributed among the group, requesting anonymous edits and comments according to the modified Delphi process.30 Multiple reviews and revisions were performed to include all participants’ comments.31 Based on the novel coronavirus (COVID-19) outbreak, the in-person meeting scheduled for April 2020 in San Francisco, California, USA, was canceled. Group communication continued via email and conference phone calls. The final consensus decision and approval were assessed in an anonymous online voting process, which was preceded by group discussions and finalized statements. ### Disclaimer Conclusions and recommendations of this consensus are not intended to establish practice guidelines or standards, nor can they—if followed—guarantee successful outcomes. For numerous reasons clinicians or patients may deviate from the current recommendations, including but not limited to medical circumstances, individual patient and clinician preferences, training skills, local resource availability. Conclusions and recommendations are based on current literature at the time of the analysis thus, reassessment and revisions are required as new or differing evidence emerges. ## Results A total of 82 RCTs and 40 observational studies were included in the current analysis comprising more than 1 million patients undergoing THA/TKA. The odds for numerous serious postoperative complications were significantly lower with the use of PNBs. Summary of findings tables, including pooled estimates of effect and quality of evidence provided in tables 2 and 3 for THA and TKA, respectively. Study characteristics including risk of bias are presented in online supplementary table A2. In-depth analysis including forest plots presented in online supplemental table A3. ### Supplementary data [[rapm-2021-102750supp003.pdf]](pending:yes) ### Supplementary data [[rapm-2021-102750supp002.pdf]](pending:yes) ### Primary analysis #### Perioperative impact of PNB use in THA In THA patients, PNB use was associated with significantly reduced complication odds in most outcome categories. For the remaining complication endpoints, no difference in risk was observed. PNB use was not associated with any *increase* in complication odds (tables 2 and 4). View this table: [Table 3](http://rapm.bmj.com/content/early/2021/08/24/rapm-2021-102750/T4) Table 3 GRADE summary of findings for total knee arthroplasty View this table: [Table 5](http://rapm.bmj.com/content/early/2021/08/24/rapm-2021-102750/T5) Table 5 The perioperative impact of anesthesia technique with or without peripheral nerve block use in total knee arthroplasty Decreased odds were found for cardiac complications (OR 0.84, 95% CI 0.76 to 0.93), pulmonary complications (OR 0.70, 95% CI 0.60 to 0.81), respiratory failure (OR 0.36, 95% CI 0.17 to 0.74), gastrointestinal, (OR 0.55, 95% CI 0.43 to 0.70), and renal complications (OR 0.67, 95% CI 0.59 to 0.76). Furthermore, odds were significantly reduced for postoperative delirium (OR 0.30, 95% CI 0.17 to 0.53), any infectious complications (OR 0.71, 95% CI 0.65 to 0.78), surgical site infections (OR 0.55, 95% CI 0.47 to 0.64), thromboembolic events (OR 0.74, 95% CI 0.58 to 0.96), and blood transfusions (OR 0.84, 95% CI 0.83 to 0.86). Resource utilization outcomes showed a reduction in critical care admission (OR 0.91, 95% CI 0.86 to 0.95), and LOS with the use of PNBs (OR −0.36, 95% CI −0.42 to −0.31). No difference in complications odds was found for mortality, perioperative nerve injury, MI, pneumonia, renal failure, stroke, and sepsis. Because of the lack of data, the outcomes readmission and cost could not be investigated in THA. #### Perioperative impact of PNB use in TKA In TKA patients, the utilization of PNBs was associated with significantly improved outcomes in many complication categories (tables 3 and 5). Reduced odds with PNB use were observed for cardiac complications (OR 0.83, 95% CI 0.79 to 0.86), pulmonary complications (OR 0.84, 95% CI 0.79 to 0.89), respiratory failure (OR 0.37, 95% CI 0.18 to 0.75), and cognitive dysfunction (OR 0.52, 95% CI 0.34 to 0.80). Furthermore, a significant decrease in any infectious complications (OR 0.77, 95% CI 0.73 to 0.80), surgical site infections (OR 0.86, 95% CI 0.80 to 0.91), thromboembolic complications (OR 0.90, 95% CI 0.84 to 0.96), blood transfusions (OR 0.91, 95% CI 0.90 to 0.92), and blood loss (mean difference −42.53 mL, 95% CI −52.08 to −32.98 mL) was found when PNBs were used. Outcomes reflecting resource utilization showed an increase in critical care admissions (OR 1.07, 95% CI 1.04 to 1.10), while readmissions were significantly reduced (OR 0.66, 95% CI 0.61,0.70) with PNB use. No difference in complication odds was found for mortality, MI, pneumonia, gastrointestinal complications, renal complications, renal failure, stroke, and sepsis, and perioperative nerve injury. Primary analysis results are additionally presented as risk ratios in online supplemental appendix A4. Pooled results of THA and TKA, rendering a significantly increased study sample, confirmed the individual THA and TKA analysis results, thus strengthening the association of increased perioperative safety with the use of PNBs. Detailed data, including forest plots are found in online supplemental tables A2 and A3. ### Supplementary data [[rapm-2021-102750supp004.pdf]](pending:yes) ### Secondary analyses #### Subgroup analysis of trial design: RCT versus observational cohort studies For transparency reasons, subgroup analysis was provided to report results stratified by trial design. As commonly described in current literature, our data demonstrate a lack of sufficient RCT-based evidence for adequate precision.32 Generally, however, RCT-based and observational-based results were compatible (tables 4 and 5). #### Subgroup analysis based on primary anesthesia technique Sample sizes varied substantially among the subgroups with the most homogenous groups of NA only and GA only emerging as rather small. Nevertheless, comparison among these two more stringently stratified groups, revealed some differences. The effect size for the reduction in cognitive dysfunction was greater in the PNB groups receiving GA compared with NA. Moreover, odds for pulmonary complications and respiratory failure were substantially reduced when PNB was used with GA as the primary anesthetic, while this was not observed in the PNB with NA group. Comparison involving the two larger groups (any GA and GA+NA) showed that results were generally consistent with the primary analysis. However, the observed effects appeared to be consistently stronger in groups involving PNB with GA. #### Sensitivity analysis investigating a potential impact of ERAS pathways A post-hoc analysis was performed to investigate whether the effects observed in the context of PNB use could have been driven by emerging clinical ERAS pathways. Studies were therefore stratified into before and after 2017 taking into account the potential impact of ERAS protocols.33 In an alternative approach, studies were also separated into those reporting average LOS<3 versus LOS≥3 days. However, this stratification proved to be unpracticable, because the lack of consistent LOS reporting rendered a loss of 60% of the study sample. In subgroup analysis by publication year, significant PNB effects were only observed in studies before the cut-off of 2017, most likely reflecting the relative scarcity of recent studies published after 2017. Nevertheless, results from the primary analysis indicated very minor differences in LOS with or without PNB use in terms of size of effect, with unlikely clinical significance. This lack of significant reduction in LOS with the use of PNBs does not appear to support the notion that the observed PNB effects may be substantially driven by ERAS measures. Nevertheless, clinical ERAS pathways may contribute to the improvement of outcomes observed with PNB use. As more evidence emerges, ERAS may prove to be significant driver of improved outcomes. ## Discussion and recommendations The current analysis demonstrates that PNB utilization was associated with reduced odds for numerous serious complications with critical impact on perioperative patient health in THA and TKA. The strongest effects were found in reduced odds for respiratory failure and cognitive dysfunction. The confidence in a beneficial impact of PNB use is strengthened by the large consistency of significantly reduced complication, independently observed among THA and TKA patients. Furthermore, the quality of evidence is strengthened considering the potential presence of two factors that would likely decrease the observed PNB effect. First, NA as the primary anesthetic would be expected to obscure an independent PNB effect based on similarities in basic features. Second, patients with a higher comorbidity burden may more readily receive PNBs.34 35 If indeed the case, this may have decreased the observed PNB effect. ### From evidence to recommendations Conclusions were based on the following factors: (1) evidence was largely in favor of the PNB intervention, (2) results were generally consistent among both patient populations and in subgroup analyses, (3) the desirable effects of the intervention significantly outweigh the potentially undesirable ones, (4) the intervention is feasible given that institutional resources and physician training are provided, (5) the intervention is acceptable to stakeholders and clinically feasible and finally (6) the intervention is in alignment with patient preferences based on improved postoperative outcome.20 ### Does PNB use influence postoperative complications in THA? The utilization of PNB versus anesthesia without PNB was associated with lower complication odds for most studied outcomes (table 2). ### Recommendation PNB for perioperative pain management should be considered for THA patients when there is no contraindication. Furthermore, the alignment of clinician skills, practice location, and other resources needs to be ensured. Level of evidence: moderate Strength of recommendation: strong. ### Does PNB use influence postoperative complications in TKA? The utilization of PNB versus anesthesia without PNB was associated with lower complication odds for most studied outcomes (table 3). ### Recommendation Use of a PNB is recommended for patients undergoing TKA except when contraindications preclude their use. Furthermore, the alignment of clinician skills, practice location, and other resources needs to be ensured. Level of evidence: moderate. Strength of recommendation: strong. ### Rationale Based on the current findings and the grading of the level of evidence, the group reached consensus on the recommendations in favor of PNB use as stated above (94% agreed, 4% disagreed, 2% abstained). Considering factors integrated by the GRADE approach for the development of recommendations, the strength of the recommendation was determined as strong. Several limitations need to be considered. According to the PICO question, the inclusion of observational data was essential because of considerable imprecision in RCT evidence, a typical issue preventing RCTs from providing high-quality evidence on unexpected and rare adverse events.13 Limitations of observational evidence, however, should be viewed in light of the fact that confounding may be less of a threat to validity when researching serious or unexpected events.13 Moreover, confounding by indication primarily influences treatment decisions that relate to expected or intended outcomes of benefit.13 The analysis included unadjusted data because of the lack of consistency in reporting, which also impeded our attempt to apply inverse variance. Given the primary focus on the impact of PNBs on critical postoperative complications, other outcomes of importance—but not directly critical to the postoperative health condition—such as patient satisfaction, pain perception, opioid consumption, postoperative nausea and vomiting, quality of life, and functional and recovery parameters require separate analyses and were not addressed here. The investigation of differences in intervention effects based on individual block techniques or specific comparators (including LIA, periarticular infiltration, intrathecal opioid use, intravenous analgesia, and patient controlled intravenous analgesia) was not feasible. Reasons included, the lack of systematic reporting causing inadequate subgroup information size and incomplete evidence synthesis in the context of a systematic literature review. Thus, data analysis providing adequate evidence on the impact of individual block types, LIA, or other comparators requires a customized methodology, targeted towards systematically capturing evidence on these interventions. However, implications of PNB effects in the context of major complications include factors such as mitigation of the surgical stress response, reduced anesthetic, and opioid requirement, as well as improved recovery and mobilization. These represent general features of PNBs and are not necessarily specific to individual block techniques. Furthermore, as a low-risk, high-yield procedure, future studies should investigate the perioperative impact of LIA with and without PNBs. Similarly, as ERAS measures may imply higher levels of care in association with PNBs, more research is needed as these clinical pathways could emerge as significant drivers of postoperative outcomes. In accordance with GRADE, predefined outcomes were reassessed after the completion of evidence summaries. In this process, anectodal reporting rather than systematic surveillance of perioperative nerve injury among individual RCTs prevented a complete evidence synthesis. Thus, selective reporting (ie, reporting of nerve injury based on its occurrence in patients receiving PNB) consequentially resulted in serious risk of bias, evident in funnel plots without random distribution. Further, an estimate of effect was falsely shifted in favor of published studies with inconsistent nerve injury surveillance. Substantially differing results between RCT and observational data further affirmed selective reporting. Given the rareness and nature of nerve injury, observational and registry data provide the most robust evidence in this context. For the analysis, the focus was therefore placed on the estimate of effect from observational, rather than RCT data.19 Current literature confirmed this approach, showing equal results for the incidence of nerve injury.36–42 Fortunately, most injuries are transient, subclinical, and may indeed not always be related to PNB43 but potentially linked to surgical and patient-related factors.36–42 44 Nevertheless, for transparency reasons RCT data are reported in online supplemental appendix A2. Current evidence allows the conclusion that regional anesthesia provides satisfactory anesthesia and analgesia for many procedures, that indications and applications are increasing, and advances in training and techniques continue to emerge.39 Because of the low incidence of block related nerve injury (0.4 per 1000 blocks)42 and the common recovery from these injuries, the group believes that the numerous benefits of PNB outweigh the potential risk for harm. Outcomes reflecting resource utilization including, critical care admission, and LOS represent rather weak surrogate markers of an independent PNB impact.45 46 The overall reduced complication risk observed with PNB use may indicate a stronger association of LOS and critical care utilization with other factors, including institutional practices and resource availability. These outcomes were therefore considered of limited importance for the development of recommendations.47 Cost of care could not be adequately analyzed due to lack of evidence. A fixed effects model was used, based on the assumption that the underlying magnitude of treatment effect was considered similar across patients, outcomes, and interventions. As such, the study populations were restricted and largely homogenous and the outcomes of interest were considered largely standardized with limited margin for differential outcome measurement or interpretation. Furthermore, a largely consistent PNB effect was anticipated with regards to serious complications (eg, suppression of the systemic stress response to surgical trauma, reduced need for anesthetic medications and interventions), which should not significantly differ between individual block types. The fixed effect approach is nevertheless limited by the residual risk for between-study clinical heterogeneity. Finally, despite efforts to investigate and account for possible publication bias in the context of GRADE, residual risk for type-1 error based on heterogeneity and positive publication bias cannot be entirely eliminated in meta-analyses. Nevertheless, this body of work provides a comprehensive and up-to-date synthesis and analysis of the current literature. In conclusion, the current body of evidence is in favor of PNB utilization for patients undergoing THA and TKA. Quantitative and qualitative analysis demonstrated reduced odds for numerous major postoperative complications. Moreover, the consensus group found that desirable intervention effects outweigh the undesirable effects, that the intervention is acceptable to stakeholders, clinically feasible, and that PNB use is in alignment with patient preferences in terms of improved outcome. ### Executive summary #### Does the use of a PNB influence postoperative complications in patients undergoing THA? The utilization of PNBs compared with anesthesia without PNB use was associated with lower odds for numerous major postoperative complications (tables 2 and 4). ### Recommendation PNB for perioperative pain management should be considered for THA when there is no contraindication. Furthermore, the alignment of clinician skills, practice location, and other resources needs to be ensured. Evidence level: moderate, strong recommendation. #### Does the use of a PNB influence postoperative complications in patients undergoing TKA? In patients undergoing TKA, the use of PNBs was associated with significantly decreased odds for numerous major postoperative complications (tables 3 and 5). ### Recommendation Use of a PNB is recommended for patients undergoing TKA except when contraindications preclude their use. Furthermore, the alignment of clinician skills, practice location, and other resources needs to be ensured. Evidence level: moderate, strong recommendation. ## Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. Systematic review and meta-analysis. ## Ethics statements ### Patient consent for publication Not required. ### Ethics approval Institutional Review Board approval was waived given the nature of previously published, deidentified data. ## Footnotes * Twitter @sgmemtsoudis, @jbLiujb, @ESoffin, @EMARIANOMD, @rljohnsonmd, @barringtonmj, @elboghdadly, @nelkassabany, @jashvant_p, @ESchwenkMD, @@ChrisWuMD * Contributors SGM had the idea for this article and is the guarantor of this project. A steering committee was formed to design, plan and lead and execute the study throughout the project: SGM, NES, CC, JB, JL, EMS, ERM, RLJ and MJH and GG. The literature search was performed by CC, RG, BJ, LP, BHL, PW, MB, GG, SJK, LB, DSW, GH, and BJ. Data extraction was performed by JB, DB, CC, BHL, PW, MB, GG, SJK, LB, DSW, GH, and BJ. Data analysis was performed by CC, SGM, NES, JP, JB, JL, ES, ERM, RLJ,MH and GG.The manuscript was written by CC, SGM, NES, JP, JB, JL, EMS, ERM, RLJ, MJH, and GG. The following participants reviewed and expanded the study plan, reviewed white papers resulting from quantitative analysis, and contributed to the interpretation of results: VA, EA, MJB, AB, JDA, KE-B, NME, PGautier, PGerner, AGDV, EG, ZG, RH, HK, PK, SK, PL’h, CMacLean, CMantilla, DM, AM, JMN, MP, JParvizi, PP, LPichler, JPoeran, LPoultsides, ESS, BDS, OS, ECS, EV, EGV-V, CLW, JY. All participants reviewed, commented on, and approved the study plan. * Funding This work is a result of solely institutional funding by the Department of Anesthesiology, Critical Care, and Pain Management at the Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA. * Competing interests SGM is a director on the boards of the American Society of Regional Anesthesia and Pain Medicine (ASRA) and the Society of Anesthesia and Sleep Medicine (SASM). He is a one-time consultant for Sandoz and the holder of US Patent Multicatheter Infusion System. US-2017-0361063. He is the owner of SGM Consulting, LLC and Centauros Healthcare Analytics and Consulting. SGM is also a shareholder in Parvizi Surgical Innovations LLC and HATH. None of the above relations influenced the conduct of the present project. * Provenance and peer review Not commissioned; externally peer reviewed. * Received March 29, 2021. * Accepted August 9, 2021. * © American Society of Regional Anesthesia & Pain Medicine 2021. No commercial re-use. See rights and permissions. Published by BMJ. ## References 1. Pabinger C, Geissler A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthritis Cartilage 2014;22:734–41.[doi:10.1016/j.joca.2014.04.009](http://dx.doi.org/10.1016/j.joca.2014.04.009)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24780823 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 2. Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780–5.[doi:10.2106/00004623-200704000-00012](http://dx.doi.org/10.2106/00004623-200704000-00012)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17403800 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiamJqc2FtIjtzOjU6InJlc2lkIjtzOjg6Ijg5LzQvNzgwIjtzOjQ6ImF0b20iO3M6NDQ6Ii9yYXBtL2Vhcmx5LzIwMjEvMDgvMjQvcmFwbS0yMDIxLTEwMjc1MC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 3. Ethgen O, Bruyère O, Richy F, et al. Health-Related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am 2004;86:963–74.[doi:10.2106/00004623-200405000-00012](http://dx.doi.org/10.2106/00004623-200405000-00012)pmid:http://www.ncbi.nlm.nih.gov/pubmed/15118039 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiamJqc2FtIjtzOjU6InJlc2lkIjtzOjg6Ijg2LzUvOTYzIjtzOjQ6ImF0b20iO3M6NDQ6Ii9yYXBtL2Vhcmx5LzIwMjEvMDgvMjQvcmFwbS0yMDIxLTEwMjc1MC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 4. Memtsoudis SG, Ma Y, Gonzalez Della Valle A, et al. Demographics, outcomes, and risk factors for adverse events associated with primary and revision total hip arthroplasties in the United States. Am J Orthop 2010;39:E72–7.pmid:http://www.ncbi.nlm.nih.gov/pubmed/20882208 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=20882208&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 5. Richman JM, Liu SS, Courpas G, et al. Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis. Anesth Analg 2006;102:248–57.[doi:10.1213/01.ANE.0000181289.09675.7D](http://dx.doi.org/10.1213/01.ANE.0000181289.09675.7D)pmid:http://www.ncbi.nlm.nih.gov/pubmed/16368838 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1213/01.ANE.0000181289.09675.7D&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=16368838&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000234275700042&link_type=ISI) 6. Memtsoudis SG, Poeran J, Cozowicz C, et al. The impact of peripheral nerve blocks on perioperative outcome in hip and knee arthroplasty-a population-based study. Pain 2016;157:2341–9.[doi:10.1097/j.pain.0000000000000654](http://dx.doi.org/10.1097/j.pain.0000000000000654)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27643835 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 7. Memtsoudis SG, Poeran J, Zubizarreta N, et al. Do hospitals performing frequent neuraxial anesthesia for hip and knee replacements have better outcomes? Anesthesiology 2018;129:428–39.[doi:10.1097/ALN.0000000000002299](http://dx.doi.org/10.1097/ALN.0000000000002299)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29878899 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 8. Memtsoudis SG, Poeran J, Zubizarreta N. Anesthetic care for orthopedic patients: is there a potential for differences in care? Anesthesiology 2016;124:608–23.[doi:10.1097/ALN.0000000000001004](http://dx.doi.org/10.1097/ALN.0000000000001004)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26771909 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 9. Memtsoudis SG, Rasul R, Suzuki S, et al. Does the impact of the type of anesthesia on outcomes differ by patient age and comorbidity burden? Reg Anesth Pain Med 2014;39:112–9.[doi:10.1097/AAP.0000000000000055](http://dx.doi.org/10.1097/AAP.0000000000000055)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24509423 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicmFwbSI7czo1OiJyZXNpZCI7czo4OiIzOS8yLzExMiI7czo0OiJhdG9tIjtzOjQ0OiIvcmFwbS9lYXJseS8yMDIxLzA4LzI0L3JhcG0tMjAyMS0xMDI3NTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 10. O'Neil M, Berkman N, Hartling L, et al. Observational evidence and strength of evidence domains: case examples. Syst Rev 2014;3:35. [doi:10.1186/2046-4053-3-35](http://dx.doi.org/10.1186/2046-4053-3-35)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24758494 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 11. Chou R, Aronson N, Atkins D, et al. AHRQ series paper 4: assessing harms when comparing medical interventions: AHRQ and the effective health-care program. J Clin Epidemiol 2010;63:502–12.[doi:10.1016/j.jclinepi.2008.06.007](http://dx.doi.org/10.1016/j.jclinepi.2008.06.007)pmid:http://www.ncbi.nlm.nih.gov/pubmed/18823754 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2008.06.007&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=18823754&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000276534800008&link_type=ISI) 12. Schünemann HJ, Tugwell P, Reeves BC, et al. Non-randomized studies as a source of complementary, sequential or replacement evidence for randomized controlled trials in systematic reviews on the effects of interventions. Res Synth Methods 2013;4:49–62.[doi:10.1002/jrsm.1078](http://dx.doi.org/10.1002/jrsm.1078)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26053539 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 13. Reeves BC DJ, Higgins JPT, Shea B. Chapter 24: Including non-randomized studies on intervention effects. In: Cochrane Handbook for systematic reviews of interventions. version 6.1, 2020. 14. Memtsoudis SG, Cozowicz C, Bekeris J, et al. Anaesthetic care of patients undergoing primary hip and knee arthroplasty: consensus recommendations from the International consensus on Anaesthesia-Related outcomes after surgery group (ICAROS) based on a systematic review and meta-analysis. Br J Anaesth 2019;123:269–87.[doi:10.1016/j.bja.2019.05.042](http://dx.doi.org/10.1016/j.bja.2019.05.042)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31351590 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 15. Cozowicz C, Poeran J, Memtsoudis SG. Epidemiology, trends, and disparities in regional anaesthesia for orthopaedic surgery. Br J Anaesth 2015;115 Suppl 2:ii57–67.[doi:10.1093/bja/aev381](http://dx.doi.org/10.1093/bja/aev381)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26658202 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 16. Reeves BC, Deeks JJ, Higgins J. 13 including non-randomized studies. In: Cochrane handbook for systematic reviews of interventions. 1, 2008: 391. 17. International prospective register of systematic reviews. Available: [https://wwwcrdyorkacuk/PROSPERO/](https://wwwcrdyorkacuk/PROSPERO/) 18. Innovation VH. Covidence systematic review software. Melbourne, Australia.. 19. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol 2011;64:407–15.[doi:10.1016/j.jclinepi.2010.07.017](http://dx.doi.org/10.1016/j.jclinepi.2010.07.017)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21247734 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2010.07.017&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21247734&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000288364300010&link_type=ISI) 20. Neumann I, Santesso N, Akl EA, et al. A guide for health professionals to interpret and use recommendations in guidelines developed with the grade approach. J Clin Epidemiol 2016;72:45–55.[doi:10.1016/j.jclinepi.2015.11.017](http://dx.doi.org/10.1016/j.jclinepi.2015.11.017)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26772609 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2015.11.017&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=26772609&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 21. Community C. Revman 5., 2014. Available: [https://communitycochraneorg/help/tools-and-software/revman-5](https://communitycochraneorg/help/tools-and-software/revman-5) 22. Kaye AD, Urman RD, Cornett EM, et al. Enhanced recovery pathways in orthopedic surgery. J Anaesthesiol Clin Pharmacol 2019;35:S35–9.[doi:10.4103/joacp.JOACP\_35\_18](http://dx.doi.org/10.4103/joacp.JOACP_35_18)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31142957 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access\_num=10.4103/joacp.JOACP_35_18&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 23. Colwell CW. The ACCP guidelines for thromboprophylaxis in total hip and knee arthroplasty. Orthopedics 2009;32:67–73.[doi:10.3928/01477447-20091103-51](http://dx.doi.org/10.3928/01477447-20091103-51)pmid:http://www.ncbi.nlm.nih.gov/pubmed/20201479 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.3928/01477447-20091103-51&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=20201479&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 24. Balshem H, Helfand M, Schünemann HJ, et al. Grade guidelines: 3. rating the quality of evidence. J Clin Epidemiol 2011;64:401–6.[doi:10.1016/j.jclinepi.2010.07.015](http://dx.doi.org/10.1016/j.jclinepi.2010.07.015)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21208779 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2010.07.015&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21208779&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000288364300009&link_type=ISI) 25. Guyatt GH, Oxman AD, Vist GE, et al. Grade: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.[doi:10.1136/bmj.39489.470347.AD](http://dx.doi.org/10.1136/bmj.39489.470347.AD)pmid:http://www.ncbi.nlm.nih.gov/pubmed/18436948 [FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMzYvNzY1MC85MjQiO3M6NDoiYXRvbSI7czo0NDoiL3JhcG0vZWFybHkvMjAyMS8wOC8yNC9yYXBtLTIwMjEtMTAyNzUwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 26. Guyatt G, Oxman AD, Akl EA, et al. Grade guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64:383–94.[doi:10.1016/j.jclinepi.2010.04.026](http://dx.doi.org/10.1016/j.jclinepi.2010.04.026)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21195583 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2010.04.026&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21195583&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 27. Guyatt GH, Oxman AD, Sultan S, et al. Grade guidelines: 9. rating up the quality of evidence. J Clin Epidemiol 2011;64:1311–6.[doi:10.1016/j.jclinepi.2011.06.004](http://dx.doi.org/10.1016/j.jclinepi.2011.06.004)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21802902 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2011.06.004&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21802902&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 28. McMaster University (developed by Evidence Prime I. Gradepro gdt: Gradepro guideline development tool [software, 2015. 29. Woolf SH, Grol R, Hutchinson A, et al. Clinical guidelines: potential benefits, limitations, and harms of clinical guidelines. BMJ 1999;318:527–30.[doi:10.1136/bmj.318.7182.527](http://dx.doi.org/10.1136/bmj.318.7182.527)pmid:http://www.ncbi.nlm.nih.gov/pubmed/10024268 [FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMTgvNzE4Mi81MjciO3M6NDoiYXRvbSI7czo0NDoiL3JhcG0vZWFybHkvMjAyMS8wOC8yNC9yYXBtLTIwMjEtMTAyNzUwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 30. La Colla L, Albertin A, La Colla G, et al. No adjustment vs. adjustment formula as input weight for propofol target-controlled infusion in morbidly obese patients. Eur J Anaesthesiol 2009;26:362–9.[doi:10.1097/EJA.0b013e328326f7d0](http://dx.doi.org/10.1097/EJA.0b013e328326f7d0)pmid:http://www.ncbi.nlm.nih.gov/pubmed/19307972 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/EJA.0b013e328326f7d0&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19307972&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000265561700002&link_type=ISI) 31. Jones J, Hunter D. Consensus methods for medical and health services research. BMJ 1995;311:376–80.[doi:10.1136/bmj.311.7001.376](http://dx.doi.org/10.1136/bmj.311.7001.376)pmid:http://www.ncbi.nlm.nih.gov/pubmed/7640549 [FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMTEvNzAwMS8zNzYiO3M6NDoiYXRvbSI7czo0NDoiL3JhcG0vZWFybHkvMjAyMS8wOC8yNC9yYXBtLTIwMjEtMTAyNzUwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 32. Macfarlane AJR, Prasad GA, Chan VWS, et al. Does regional anaesthesia improve outcome after total hip arthroplasty? A systematic review. Br J Anaesth 2009;103:335–45.[doi:10.1093/bja/aep208](http://dx.doi.org/10.1093/bja/aep208)pmid:http://www.ncbi.nlm.nih.gov/pubmed/19628483 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1093/bja/aep208&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19628483&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000269013300002&link_type=ISI) 33. Frassanito L, Vergari A, Nestorini R, et al. Enhanced recovery after surgery (ERAS) in hip and knee replacement surgery: description of a multidisciplinary program to improve management of the patients undergoing major orthopedic surgery. Musculoskelet Surg 2020;104:87–92.[doi:10.1007/s12306-019-00603-4](http://dx.doi.org/10.1007/s12306-019-00603-4)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31054080 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 34. McIsaac DI, McCartney CJL, Walraven Cvan. Peripheral nerve blockade for primary total knee arthroplasty: a population-based cohort study of outcomes and resource utilization. Anesthesiology 2017;126:312–20.[doi:10.1097/ALN.0000000000001455](http://dx.doi.org/10.1097/ALN.0000000000001455)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27977461 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 35. Vadivelu N, Kai AM, Maslin B, et al. Role of regional anesthesia in foot and ankle surgery. Foot Ankle Spec 2015;8:212–9.[doi:10.1177/1938640015569769](http://dx.doi.org/10.1177/1938640015569769)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25655517 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1177/1938640015569769&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=25655517&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 36. Jeng CL, Torrillo TM, Rosenblatt MA. Complications of peripheral nerve blocks. Br J Anaesth 2010;105 Suppl 1:i97–107.[doi:10.1093/bja/aeq273](http://dx.doi.org/10.1093/bja/aeq273)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21148659 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 37. Barrington MJ, Snyder GL. Neurologic complications of regional anesthesia. Curr Opin Anaesthesiol 2011;24:554–60.[doi:10.1097/ACO.0b013e32834ae1f7](http://dx.doi.org/10.1097/ACO.0b013e32834ae1f7)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21869680 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/ACO.0b013e32834ae1f7&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21869680&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 38. Neal JM, Barrington MJ, Brull R, et al. The second asra practice Advisory on neurologic complications associated with regional anesthesia and pain medicine: Executive summary 2015. Reg Anesth Pain Med 2015;40:401–30.[doi:10.1097/AAP.0000000000000286](http://dx.doi.org/10.1097/AAP.0000000000000286)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26288034 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicmFwbSI7czo1OiJyZXNpZCI7czo4OiI0MC81LzQwMSI7czo0OiJhdG9tIjtzOjQ0OiIvcmFwbS9lYXJseS8yMDIxLzA4LzI0L3JhcG0tMjAyMS0xMDI3NTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 39. Brull R, McCartney CJL, Chan VWS, et al. Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg 2007;104:965–74.[doi:10.1213/01.ane.0000258740.17193.ec](http://dx.doi.org/10.1213/01.ane.0000258740.17193.ec)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17377115 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1213/01.ane.0000258740.17193.ec&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=17377115&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000245371900042&link_type=ISI) 40. Walker KJ, McGrattan K, Aas‐Eng K. Ultrasound guidance for peripheral nerve blockade. Cochrane Database Syst Rev 2009;7.[doi:10.1002/14651858.CD006459.pub2](http://dx.doi.org/10.1002/14651858.CD006459.pub2) 41. Fredrickson MJ, Kilfoyle DH. Neurological complication analysis of 1000 ultrasound guided peripheral nerve blocks for elective orthopaedic surgery: a prospective study. Anaesthesia 2009;64:836–44.[doi:10.1111/j.1365-2044.2009.05938.x](http://dx.doi.org/10.1111/j.1365-2044.2009.05938.x)pmid:http://www.ncbi.nlm.nih.gov/pubmed/19604186 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1111/j.1365-2044.2009.05938.x&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19604186&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000267830800004&link_type=ISI) 42. Barrington MJ, Watts SA, Gledhill SR, et al. Preliminary results of the Australasian regional anaesthesia collaboration: a prospective audit of more than 7000 peripheral nerve and plexus blocks for neurologic and other complications. Reg Anesth Pain Med 2009;34:534–41.[doi:10.1097/aap.0b013e3181ae72e8](http://dx.doi.org/10.1097/aap.0b013e3181ae72e8)pmid:http://www.ncbi.nlm.nih.gov/pubmed/19916206 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/AAP.0b013e3181ae72e8&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19916206&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000271687200002&link_type=ISI) 43. Yajnik M, Kou A, Mudumbai SC, et al. Peripheral nerve blocks are not associated with increased risk of perioperative peripheral nerve injury in a Veterans Affairs inpatient surgical population. Reg Anesth Pain Med 2019;44:81–5.[doi:10.1136/rapm-2018-000006](http://dx.doi.org/10.1136/rapm-2018-000006)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30640657 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicmFwbSI7czo1OiJyZXNpZCI7czo3OiI0NC8xLzgxIjtzOjQ6ImF0b20iO3M6NDQ6Ii9yYXBtL2Vhcmx5LzIwMjEvMDgvMjQvcmFwbS0yMDIxLTEwMjc1MC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 44. Sites BD, Taenzer AH, Herrick MD, et al. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: an analysis from a prospective clinical Registry. Reg Anesth Pain Med[doi:10.1097/AAP.0b013e31825cb3d6](http://dx.doi.org/10.1097/AAP.0b013e31825cb3d6)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22705953 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 45. Memtsoudis SG, Sun X, Chiu Y-L, et al. Utilization of critical care services among patients undergoing total hip and knee arthroplasty: epidemiology and risk factors. Anesthesiology 2012;117:107–16.[doi:10.1097/ALN.0b013e31825afd36](http://dx.doi.org/10.1097/ALN.0b013e31825afd36)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22634871 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/ALN.0b013e31825afd36&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22634871&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000305672800015&link_type=ISI) 46. Mears SC, Edwards PK, Barnes CL. How to decrease length of hospital stay after total knee replacement. J Surg Orthop Adv 2016;25:2–7.pmid:http://www.ncbi.nlm.nih.gov/pubmed/27082881 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 47. Guyatt GH, Oxman AD, Kunz R, et al. Grade guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 2011;64:395–400.[doi:10.1016/j.jclinepi.2010.09.012](http://dx.doi.org/10.1016/j.jclinepi.2010.09.012)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21194891 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.jclinepi.2010.09.012&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21194891&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 48. Peters CL, Shirley B, Erickson J. The effect of a new multimodal perioperative anesthetic regimen on postoperative pain, side effects, rehabilitation, and length of hospital stay after total joint arthroplasty. J Arthroplasty 2006;21:132–8.[doi:10.1016/j.arth.2006.04.017](http://dx.doi.org/10.1016/j.arth.2006.04.017)pmid:http://www.ncbi.nlm.nih.gov/pubmed/16950075 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.arth.2006.04.017&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=16950075&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000240688700023&link_type=ISI) 49. Amundson AW, Johnson RL, Abdel MP, et al. A three-arm randomized clinical trial comparing continuous femoral plus single-injection sciatic peripheral nerve blocks versus periarticular injection with ropivacaine or liposomal bupivacaine for patients undergoing total knee arthroplasty. Anesthesiology 2017;126:1139–50.[doi:10.1097/ALN.0000000000001586](http://dx.doi.org/10.1097/ALN.0000000000001586)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28234636 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 50. Barrington MJ, Olive D, Low K, et al. Continuous femoral nerve blockade or epidural analgesia after total knee replacement: a prospective randomized controlled trial. Anesth Analg 2005;101:1824–9.[doi:10.1213/01.ANE.0000184113.57416.DD](http://dx.doi.org/10.1213/01.ANE.0000184113.57416.DD)pmid:http://www.ncbi.nlm.nih.gov/pubmed/16301267 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=16301267&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000233512400048&link_type=ISI) 51. Campbell A, McCormick M, McKinlay K, et al. Epidural vs. lumbar plexus infusions following total knee arthroplasty: randomized controlled trial. Eur J Anaesthesiol 2008;25:502–7.[doi:10.1017/S0265021508003724](http://dx.doi.org/10.1017/S0265021508003724)pmid:http://www.ncbi.nlm.nih.gov/pubmed/18298872 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1017/S0265021508003724&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=18298872&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000256641300012&link_type=ISI) 52. Wall PDH, Parsons NR, Parsons H, et al. A pragmatic randomised controlled trial comparing the efficacy of a femoral nerve block and periarticular infiltration for early pain relief following total knee arthroplasty. Bone Joint J 2017;99-B:904–11.[doi:10.1302/0301-620X.99B7.BJJ-2016-0767.R2](http://dx.doi.org/10.1302/0301-620X.99B7.BJJ-2016-0767.R2)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28663395 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 53. Wu JWS, Wong YC. Elective unilateral total knee replacement using continuous femoral nerve blockade versus conventional patient-controlled analgesia: perioperative patient management based on a multidisciplinary pathway. Hong Kong Med J 2014;20:45–51.[doi:10.12809/hkmj133899](http://dx.doi.org/10.12809/hkmj133899)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24021935 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 54. Akkaya A, Tekelioglu UY, Demirhan A, et al. Ultrasound-guided femoral and sciatic nerve blocks combined with sedoanalgesia versus spinal anesthesia in total knee arthroplasty. Korean J Anesthesiol 2014;67:90–5.[doi:10.4097/kjae.2014.67.2.90](http://dx.doi.org/10.4097/kjae.2014.67.2.90)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25237444 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 55. Lovald ST, Ong KL, Lau EC, et al. Readmission and complications for catheter and injection femoral nerve block administration after total knee arthroplasty in the Medicare population. J Arthroplasty 2015;30:2076–81.[doi:10.1016/j.arth.2015.06.035](http://dx.doi.org/10.1016/j.arth.2015.06.035)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26205089 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 56. Bogoch ER, Henke M, Mackenzie T, et al. Lumbar paravertebral nerve block in the management of pain after total hip and knee arthroplasty: a randomized controlled clinical trial. J Arthroplasty 2002;17:398–401.[doi:10.1054/arth.2002.31079](http://dx.doi.org/10.1054/arth.2002.31079)pmid:http://www.ncbi.nlm.nih.gov/pubmed/12066266 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1054/arth.2002.31079&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=12066266&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000176240400003&link_type=ISI) 57. Baranović S, Maldini B, Milosević M, et al. Peripheral regional analgesia with femoral catheter versus intravenous patient controlled analgesia after total knee arthroplasty: a prospective randomized study. Coll Antropol 2011;35:1209–14.pmid:http://www.ncbi.nlm.nih.gov/pubmed/22397261 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22397261&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 58. Niskanen RO, Strandberg N. Bedside femoral block performed on the first postoperative day after unilateral total knee arthroplasty: a randomized study of 49 patients. J Knee Surg 2005;18:192–6.[doi:10.1055/s-0030-1248180](http://dx.doi.org/10.1055/s-0030-1248180)pmid:http://www.ncbi.nlm.nih.gov/pubmed/16152867 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=16152867&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 59. Widmer BJ, Scholes CJ, Pattullo GG, et al. Is femoral nerve block necessary during total knee arthroplasty?: a randomized controlled trial. J Arthroplasty 2012;27:1800–5.[doi:10.1016/j.arth.2012.03.052](http://dx.doi.org/10.1016/j.arth.2012.03.052)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22658231 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.arth.2012.03.052&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22658231&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000311583500011&link_type=ISI) 60. De Ruyter ML, Brueilly KE, Harrison BA, et al. A pilot study on continuous femoral perineural catheter for analgesia after total knee arthroplasty: the effect on physical rehabilitation and outcomes. J Arthroplasty 2006;21:1111–7.[doi:10.1016/j.arth.2005.12.005](http://dx.doi.org/10.1016/j.arth.2005.12.005)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17162169 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.arth.2005.12.005&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=17162169&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000243185100005&link_type=ISI) 61. Bron JL, Verhart J, Sierevelt IN, et al. No effect of double nerve block of the lateral cutaneous nerve and subcostal nerves in total hip arthroplasty. Acta Orthop 2018;89:272–7.[doi:10.1080/17453674.2018.1437951](http://dx.doi.org/10.1080/17453674.2018.1437951)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29493328 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 62. Chelly JE, Greger J, Gebhard R, et al. Continuous femoral blocks improve recovery and outcome of patients undergoing total knee arthroplasty. J Arthroplasty 2001;16:436–45.[doi:10.1054/arth.2001.23622](http://dx.doi.org/10.1054/arth.2001.23622)pmid:http://www.ncbi.nlm.nih.gov/pubmed/11402405 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1054/arth.2001.23622&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=11402405&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000169267500005&link_type=ISI) 63. Ortiz-Gómez JR, Perepérez-Candel M, Vázquez-Torres JM, et al. Postoperative analgesia for elective total knee arthroplasty under subarachnoid anesthesia with opioids: comparison between epidural, femoral block and adductor canal block techniques (with and without perineural adjuvants). A prospective, randomized, clinical trial. Minerva Anestesiol 2017;83:50–8.[doi:10.23736/S0375-9393.16.11646-3](http://dx.doi.org/10.23736/S0375-9393.16.11646-3)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27792212 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 64. Duncan CM, Moeschler SM, Horlocker TT, et al. A self-paired comparison of perioperative outcomes before and after implementation of a clinical pathway in patients undergoing total knee arthroplasty. Reg Anesth Pain Med 2013;38:533–8.[doi:10.1097/AAP.0000000000000014](http://dx.doi.org/10.1097/AAP.0000000000000014)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24121605 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicmFwbSI7czo1OiJyZXNpZCI7czo4OiIzOC82LzUzMyI7czo0OiJhdG9tIjtzOjQ0OiIvcmFwbS9lYXJseS8yMDIxLzA4LzI0L3JhcG0tMjAyMS0xMDI3NTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 65. Hua X, Hu Y, Chen D. Efficacy and safety of ultrasound-guided fascia iliaca compartment block using dexmedetomidine combined with ropivacaine in aged patients undergoing hip replacement. Int J Clin Exp Med 2017;10:16484–91. 66. Kearns R, Macfarlane A, Grant A, et al. A randomised, controlled, double blind, non-inferiority trial of ultrasound-guided fascia iliaca block vs. spinal morphine for analgesia after primary hip arthroplasty. Anaesthesia 2016;71:1431–40.[doi:10.1111/anae.13620](http://dx.doi.org/10.1111/anae.13620)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27714758 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 67. Siddiqui ZI, Cepeda MS, Denman W, et al. Continuous lumbar plexus block provides improved analgesia with fewer side effects compared with systemic opioids after hip arthroplasty: a randomized controlled trial. Reg Anesth Pain Med 2007;32:393–8.[doi:10.1016/j.rapm.2007.04.008](http://dx.doi.org/10.1016/j.rapm.2007.04.008)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17961837 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicmFwbSI7czo1OiJyZXNpZCI7czo4OiIzMi81LzM5MyI7czo0OiJhdG9tIjtzOjQ0OiIvcmFwbS9lYXJseS8yMDIxLzA4LzI0L3JhcG0tMjAyMS0xMDI3NTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 68. Schmidt NR, Donofrio JA, England DA, et al. Extended-release epidural morphine vs continuous peripheral nerve block for management of postoperative pain after orthopedic knee surgery: a retrospective study. Aana J 2009;77:349–54.pmid:http://www.ncbi.nlm.nih.gov/pubmed/19911644 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19911644&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 69. Sugar SL, Hutson LR, Shannon P, et al. Comparison of extended-release epidural morphine with femoral nerve block to patient-controlled epidural analgesia for postoperative pain control of total knee arthroplasty: a case-controlled study. Ochsner J 2011;11:17–21.pmid:http://www.ncbi.nlm.nih.gov/pubmed/21603330 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoib2Noam5sIjtzOjU6InJlc2lkIjtzOjc6IjExLzEvMTciO3M6NDoiYXRvbSI7czo0NDoiL3JhcG0vZWFybHkvMjAyMS8wOC8yNC9yYXBtLTIwMjEtMTAyNzUwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 70. Chan E-Y, Fransen M, Sathappan S, et al. Comparing the analgesia effects of single-injection and continuous femoral nerve blocks with patient controlled analgesia after total knee arthroplasty. J Arthroplasty 2013;28:608–13.[doi:10.1016/j.arth.2012.06.039](http://dx.doi.org/10.1016/j.arth.2012.06.039)pmid:http://www.ncbi.nlm.nih.gov/pubmed/23142441 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=23142441&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 71. Fan R, Zhao L, Hong H. Effect of inhalation anesthesia combined with nerve block on improving postoperative cognitive function in elderly orthopedic patients. Biomedical Research 2017;28:4485–9. 72. Lee JJ, Choi SS, Lee MK, et al. Effect of continuous psoas compartment block and intravenous patient controlled analgesia on postoperative pain control after total knee arthroplasty. Korean J Anesthesiol 2012;62:47–51.[doi:10.4097/kjae.2012.62.1.47](http://dx.doi.org/10.4097/kjae.2012.62.1.47)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22323954 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22323954&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 73. Lu Y, Huang HM, Yan J. Comparison of postoperative femoral nerve block, epidural block and intravenous patient-controlled analgesia in pain control and postoperative rehabilitation after total knee arthroplasty. Int J Clin Exp Med 2017;10:6680–7. 74. Ng HP, Cheong KF, Lim A, et al. Intraoperative single-shot "3-in-1" femoral nerve block with ropivacaine 0.25%, ropivacaine 0.5% or bupivacaine 0.25% provides comparable 48-hr analgesia after unilateral total knee replacement. Can J Anaesth 2001;48:1102–8.[doi:10.1007/BF03020376](http://dx.doi.org/10.1007/BF03020376)pmid:http://www.ncbi.nlm.nih.gov/pubmed/11744586 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1007/BF03020376&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=11744586&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000172943000009&link_type=ISI) 75. Peng L, Ren L, Qin P, et al. Continuous femoral nerve block versus intravenous patient controlled analgesia for knee mobility and long-term pain in patients receiving total knee replacement: a randomized controlled trial. Evid Based Complement Alternat Med 2014;2014:569107:1–12. [doi:10.1155/2014/569107](http://dx.doi.org/10.1155/2014/569107)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25254055 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 76. Sites BD, Beach M, Gallagher JD, et al. A single injection ultrasound-assisted femoral nerve block provides side effect-sparing analgesia when compared with intrathecal morphine in patients undergoing total knee arthroplasty. Anesth Analg 2004;99:1539–43.[doi:10.1213/01.ANE.0000136470.51029.52](http://dx.doi.org/10.1213/01.ANE.0000136470.51029.52)pmid:http://www.ncbi.nlm.nih.gov/pubmed/15502061 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=15502061&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000224684400046&link_type=ISI) 77. Spangehl MJ, Clarke HD, Hentz JG, et al. The Chitranjan Ranawat Award: Periarticular injections and femoral & sciatic blocks provide similar pain relief after TKA: a randomized clinical trial. Clin Orthop Relat Res 2015;473:45–53.[doi:10.1007/s11999-014-3603-0](http://dx.doi.org/10.1007/s11999-014-3603-0)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24706022 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1007/s11999-014-3603-0&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=24706022&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 78. Toftdahl K, Nikolajsen L, Haraldsted V, et al. Comparison of peri- and intraarticular analgesia with femoral nerve block after total knee arthroplasty: a randomized clinical trial. Acta Orthop 2007;78:172–9.[doi:10.1080/17453670710013645](http://dx.doi.org/10.1080/17453670710013645)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17464603 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1080/17453670710013645&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=17464603&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000246988400003&link_type=ISI) 79. Andersen HL, Gyrn J, Moller L. Continuous saphenous nerve block as supplement to single-dose local infiltration analgesia for postoperative pain management after total knee arthroplasty. Reg Anesth Pain Med 2012;37. 80. Kadic L, Boonstra MC, DE Waal Malefijt MC, DEWM, Lako SJ MC, et al. Continuous femoral nerve block after total knee arthroplasty? Acta Anaesthesiol Scand 2009;53:914–20.[doi:10.1111/j.1399-6576.2009.01965.x](http://dx.doi.org/10.1111/j.1399-6576.2009.01965.x)pmid:http://www.ncbi.nlm.nih.gov/pubmed/19388886 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1111/j.1399-6576.2009.01965.x&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19388886&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 81. Chen C, Li M, Wang K. Protective effect of combined general and regional anesthesia on postoperative cognitive function in older arthroplasty patients. Int J Clin Exp Med 2017;10:15453–8. 82. Marino J, Russo J, Kenny M, et al. Continuous lumbar plexus block for postoperative pain control after total hip arthroplasty. A randomized controlled trial. J Bone Joint Surg Am 2009;91:29–37.[doi:10.2106/JBJS.H.00079](http://dx.doi.org/10.2106/JBJS.H.00079)pmid:http://www.ncbi.nlm.nih.gov/pubmed/19122076 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiamJqc2FtIjtzOjU6InJlc2lkIjtzOjc6IjkxLzEvMjkiO3M6NDoiYXRvbSI7czo0NDoiL3JhcG0vZWFybHkvMjAyMS8wOC8yNC9yYXBtLTIwMjEtMTAyNzUwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 83. Stevens RD, Van Gessel E, Flory N, et al. Lumbar plexus block reduces pain and blood loss associated with total hip arthroplasty. Anesthesiology 2000;93:115–21.[doi:10.1097/00000542-200007000-00021](http://dx.doi.org/10.1097/00000542-200007000-00021)pmid:http://www.ncbi.nlm.nih.gov/pubmed/10861154 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/00000542-200007000-00021&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=10861154&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000087894500017&link_type=ISI) 84. Kinjo S, Lim E, Sands LP, et al. Does using a femoral nerve block for total knee replacement decrease postoperative delirium? BMC Anesthesiol 2012;12:4. [doi:10.1186/1471-2253-12-4](http://dx.doi.org/10.1186/1471-2253-12-4)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22405052 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1186/1471-2253-12-4&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22405052&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 85. Chaumeron A, Audy D, Drolet P, et al. Periarticular injection in knee arthroplasty improves quadriceps function. Clin Orthop Relat Res 2013;471:2284–95.[doi:10.1007/s11999-013-2928-4](http://dx.doi.org/10.1007/s11999-013-2928-4)pmid:http://www.ncbi.nlm.nih.gov/pubmed/23516031 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1007/s11999-013-2928-4&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=23516031&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 86. Kim JH, Cho MR, Kim SO, et al. A comparison of femoral/sciatic nerve block with lateral femoral cutaneous nerve block and combined spinal epidural anesthesia for total knee replacement arthroplasty. Korean J Anesthesiol 2012;62:448–53.[doi:10.4097/kjae.2012.62.5.448](http://dx.doi.org/10.4097/kjae.2012.62.5.448)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22679542 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22679542&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 87. Lee A-R, Choi D-H, Ko JS, et al. Effect of combined single-injection femoral nerve block and patient-controlled epidural analgesia in patients undergoing total knee replacement. Yonsei Med J 2011;52:145–50.[doi:10.3349/ymj.2011.52.1.145](http://dx.doi.org/10.3349/ymj.2011.52.1.145)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21155047 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21155047&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 88. Sahin L, Korkmaz HF, Sahin M, et al. Ultrasound-guided single-injection femoral nerve block provides effective analgesia after total knee arthroplasty up to 48 hours. Agri 2014;26:113–8.[doi:10.5505/agri.2014.83788](http://dx.doi.org/10.5505/agri.2014.83788)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25205409 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 89. Angers M, Belzile Étienne L, Vachon J, et al. Negative influence of femoral nerve block on quadriceps strength recovery following total knee replacement: a prospective randomized trial. Orthop Traumatol Surg Res 2019;105:633–7.[doi:10.1016/j.otsr.2019.03.002](http://dx.doi.org/10.1016/j.otsr.2019.03.002)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30928275 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 90. Johnson RL, Amundson AW, Abdel MP, et al. Continuous posterior lumbar plexus nerve block versus Periarticular injection with ropivacaine or liposomal bupivacaine for total hip arthroplasty. J Bone Joint Surg 2017;99:1836–45.[doi:10.2106/JBJS.16.01305](http://dx.doi.org/10.2106/JBJS.16.01305) 91. Bali C, Ozmete O, Eker HE, et al. Postoperative analgesic efficacy of fascia iliaca block versus periarticular injection for total knee arthroplasty. J Clin Anesth 2016;35:404–10.[doi:10.1016/j.jclinane.2016.08.030](http://dx.doi.org/10.1016/j.jclinane.2016.08.030)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27871565 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 92. Fan L, Yu X, Zan P, et al. Comparison of local infiltration analgesia with femoral nerve block for total knee arthroplasty: a prospective, randomized clinical trial. J Arthroplasty 2016;31:1361–5.[doi:10.1016/j.arth.2015.12.028](http://dx.doi.org/10.1016/j.arth.2015.12.028)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26810604 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 93. Long WT, Ward SR, Dorr LD, et al. Postoperative pain management following total knee arthroplasty: a randomized comparison of continuous epidural versus femoral nerve infusion. J Knee Surg 2006;19:137–43.[doi:10.1055/s-0030-1248096](http://dx.doi.org/10.1055/s-0030-1248096)pmid:http://www.ncbi.nlm.nih.gov/pubmed/16642893 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=16642893&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 94. Moghtadaei M, Farahini H, Faiz SH-R, et al. Pain management for total knee arthroplasty: single-injection femoral nerve block versus local infiltration analgesia. Iran Red Crescent Med J 2014;16:e13247. [doi:10.5812/ircmj.13247](http://dx.doi.org/10.5812/ircmj.13247)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24719708 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 95. Nader A, Kendall MC, Wixson RL, et al. A randomized trial of epidural analgesia followed by continuous femoral analgesia compared with oral opioid analgesia on short- and long-term functional recovery after total knee replacement. Pain Med 2012;13:937–47.[doi:10.1111/j.1526-4637.2012.01409.x](http://dx.doi.org/10.1111/j.1526-4637.2012.01409.x)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22680916 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 96. Ng F-Y, Ng JK-F, Chiu K-Y, et al. Multimodal periarticular injection vs continuous femoral nerve block after total knee arthroplasty: a prospective, crossover, randomized clinical trial. J Arthroplasty 2012;27:1234–8.[doi:10.1016/j.arth.2011.12.021](http://dx.doi.org/10.1016/j.arth.2011.12.021)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22325963 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.arth.2011.12.021&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22325963&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000304790900067&link_type=ISI) 97. Stathellis A, Fitz W, Schnurr C, et al. Periarticular injections with continuous perfusion of local anaesthetics provide better pain relief and better function compared to femoral and sciatic blocks after TKA: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc 2017;25:2702–7.[doi:10.1007/s00167-015-3633-5](http://dx.doi.org/10.1007/s00167-015-3633-5)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25966679 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 98. Zinkus J, Mockutė L, Gelmanas A, et al. Comparison of 2 analgesia modalities in total knee replacement surgery: is there an effect on knee function rehabilitation? Med Sci Monit 2017;23:3019–25.[doi:10.12659/MSM.899320](http://dx.doi.org/10.12659/MSM.899320)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28634320 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 99. Alsheikh KA, Alkhelaifi AS, Alharbi MK, et al. Adductor canal blockade versus continuous epidural analgesia after total knee joint replacement: a retrospective cohort study. Saudi J Anaesth 2020;14:38–43.[doi:10.4103/sja.SJA\_354\_19](http://dx.doi.org/10.4103/sja.SJA_354_19)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31998018 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 100.Rajeev A, Tumia N, Karn K, et al. Postoperative pain relief and functional outcome following total knee arthroplasty - a prospective comparative audit of three analgesic regimes. Acta Orthop Belg 2016;82:265–70.pmid:http://www.ncbi.nlm.nih.gov/pubmed/27682287 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 101.Suthersan M, Pit S, Gordon L, et al. Local infiltration analgesia versus standard analgesia in total knee arthroplasty. J Orthop Surg 2015;23:198–201.[doi:10.1177/230949901502300217](http://dx.doi.org/10.1177/230949901502300217)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26321550 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 102.Raimer C, Priem K, Wiese AA, et al. Continuous psoas and sciatic block after knee arthroplasty: good effects compared to epidural analgesia or i.v. opioid analgesia: a prospective study of 63 patients. Acta Orthop 2007;78:193–200.[doi:10.1080/17453670710013672](http://dx.doi.org/10.1080/17453670710013672)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17464606 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1080/17453670710013672&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=17464606&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000246988400006&link_type=ISI) 103.Kuchálik J, Magnuson A, Lundin A, et al. Local infiltration analgesia or femoral nerve block for postoperative pain management in patients undergoing total hip arthroplasty. A randomized, double-blind study. Scand J Pain 2017;16:223–30.[doi:10.1016/j.sjpain.2017.05.002](http://dx.doi.org/10.1016/j.sjpain.2017.05.002)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28850408 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 104.Asakura Y, Tsuchiya H, Mori H, et al. Reduction of the incidence of development of venous thromboembolism by ultrasound-guided femoral nerve block in total knee arthroplasty. Korean J Anesthesiol 2011;61:382–7.[doi:10.4097/kjae.2011.61.5.382](http://dx.doi.org/10.4097/kjae.2011.61.5.382)pmid:http://www.ncbi.nlm.nih.gov/pubmed/22148086 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22148086&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 105.Beausang DH, Pozek J-PJ, Chen AF, et al. A randomized controlled trial comparing adductor canal catheter and intraarticular catheter after primary total knee arthroplasty. J Arthroplasty 2016;31:298–301.[doi:10.1016/j.arth.2016.01.064](http://dx.doi.org/10.1016/j.arth.2016.01.064)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27067467 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 106.Reinhardt KR, Duggal S, Umunna B-P, et al. Intraarticular analgesia versus epidural plus femoral nerve block after TKA: a randomized, double-blind trial. Clin Orthop Relat Res 2014;472:1400–8.[doi:10.1007/s11999-013-3351-6](http://dx.doi.org/10.1007/s11999-013-3351-6)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24163093 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 107.Sogbein OA, Sondekoppam RV, Bryant D, et al. Ultrasound-Guided motor-sparing knee blocks for postoperative analgesia following total knee arthroplasty: a randomized blinded study. J Bone Joint Surg Am 2017;99:1274–81.[doi:10.2106/JBJS.16.01266](http://dx.doi.org/10.2106/JBJS.16.01266)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28763413 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 108.Singelyn FJ, Gouverneur JM. Postoperative analgesia after total hip arthroplasty: i.v. PCA with morphine, patient-controlled epidural analgesia, or continuous "3-in-1" block?: a prospective evaluation by our acute pain service in more than 1,300 patients. J Clin Anesth 1999;11:550–4.[doi:10.1016/S0952-8180(99)00092-6](http://dx.doi.org/10.1016/S0952-8180(99)00092-6)pmid:http://www.ncbi.nlm.nih.gov/pubmed/10624638 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/S0952-8180(99)00092-6&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=10624638&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000084383600006&link_type=ISI) 109.Jacob AK, Mantilla CB, Sviggum HP, et al. Perioperative nerve injury after total knee arthroplasty: regional anesthesia risk during a 20-year cohort study. Anesthesiology 2011;114:311–7.[doi:10.1097/ALN.0b013e3182039f5d](http://dx.doi.org/10.1097/ALN.0b013e3182039f5d)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21239974 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/ALN.0b013e3182039f5d&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21239974&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 110.Rizk H, Hosni Y, Abdeldayem S. Combined adductor canal and sciatic nerve block compared with local intraarticular infiltration analgesia for total knee arthroplasty: a prospective blinded randomized controlled study. Curr Orthop Pract 2017;28:179–83.[doi:10.1097/BCO.0000000000000480](http://dx.doi.org/10.1097/BCO.0000000000000480) 111.Goytizolo EA, Stundner O, Rúa SH, et al. The effect of regional analgesia on vascular tone in hip arthroplasty patients. Hss J 2016;12:125–31.[doi:10.1007/s11420-015-9477-1](http://dx.doi.org/10.1007/s11420-015-9477-1)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27385940 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 112.Danninger T, Rasul R, Poeran J, et al. Blood transfusions in total hip and knee arthroplasty: an analysis of outcomes. Scientific World J 2014;2014:623460 [doi:10.1155/2014/623460](http://dx.doi.org/10.1155/2014/623460)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24587736 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 113.Simonsen OH, Gorst-Rasmussen A, Simonsen AB, et al. Blood reinfusion combined with femoral nerve block in total knee replacement for patients with increased risk of bleeding. J Orthop Surg 2011;19:64–8.[doi:10.1177/230949901101900115](http://dx.doi.org/10.1177/230949901101900115)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21519080 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 114.Kendrišić M, urbatović M, Djordjević D, et al. Analgesic efficacy and safety of four different anesthesia/postoperative analgesia protocols in patients following total hip arthroplasty. Vojnosanit Pregl 2017;74:814–20. 115.Kratz T, Dette F, Schmitt J, et al. Impact of regional femoral nerve block during general anesthesia for hip arthoplasty on blood pressure, heart rate and pain control: a randomized controlled study. THC 2015;23:313–22.[doi:10.3233/THC-150898](http://dx.doi.org/10.3233/THC-150898)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25669214 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 116.Nishio S, Fukunishi S, Juichi M, et al. Comparison of continuous femoral nerve block, caudal epidural block, and intravenous patient-controlled analgesia in pain control after total hip arthroplasty: a prospective randomized study. Orthop Rev 2014;6:5138. [doi:10.4081/or.2014.5138](http://dx.doi.org/10.4081/or.2014.5138)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24744837 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 117.Twyman R, Kirwan T, Fennelly M. Blood loss reduced during hip arthroplasty by lumbar plexus block. J Bone Joint Surg Br 1990;72:770–1.[doi:10.1302/0301-620X.72B5.2211752](http://dx.doi.org/10.1302/0301-620X.72B5.2211752)pmid:http://www.ncbi.nlm.nih.gov/pubmed/2211752 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=2211752&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=A1990DZ64900005&link_type=ISI) 118.Tetsunaga T, Tetsunaga T, Fujiwara K, et al. Combination therapy with continuous three-in-one femoral nerve block and periarticular multimodal drug infiltration after total hip arthroplasty. Pain Res Manag 2016;2016:1425201. [doi:10.1155/2016/1425201](http://dx.doi.org/10.1155/2016/1425201)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28070159 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 119.Kovalak E, Doğan AT, Üzümcügil O, et al. A comparison of continuous femoral nerve block and periarticular local infiltration analgesia in the management of early period pain developing after total knee arthroplasty. Acta Orthop Traumatol Turc 2015;49:260–6.[doi:10.3944/AOTT.2015.14.0263](http://dx.doi.org/10.3944/AOTT.2015.14.0263)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26200404 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 120.Álvarez NER, Ledesma RJG, Hamaji A, et al. Continuous femoral nerve blockade and single-shot sciatic nerve block promotes better analgesia and lower bleeding for total knee arthroplasty compared to intrathecal morphine: a randomized trial. BMC Anesthesiol 2017;17:64. [doi:10.1186/s12871-017-0355-x](http://dx.doi.org/10.1186/s12871-017-0355-x)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28499420 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 121.Fahs AM, Koueiter DM, Kurdziel MD, et al. Psoas compartment block vs periarticular local anesthetic infiltration for pain management after anterior total hip arthroplasty: a prospective, randomized study. J Arthroplasty 2018;33:2192–6.[doi:10.1016/j.arth.2018.02.052](http://dx.doi.org/10.1016/j.arth.2018.02.052)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29555492 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 122.Mei B, Zha H, Lu X, et al. Peripheral nerve block as a supplement to light or deep general anesthesia in elderly patients receiving total hip arthroplasty: a prospective randomized study. Clin J Pain 2017;33:1053–9.[doi:10.1097/AJP.0000000000000502](http://dx.doi.org/10.1097/AJP.0000000000000502)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28383293 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 123.Thybo KH, Schmidt H, Hägi-Pedersen D. Effect of lateral femoral cutaneous nerve-block on pain after total hip arthroplasty: a randomised, blinded, placebo-controlled trial. BMC Anesthesiol 2016;16:21. [doi:10.1186/s12871-016-0183-4](http://dx.doi.org/10.1186/s12871-016-0183-4)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27006014 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 124.Ashraf A, Raut VV, Canty SJ, et al. Pain control after primary total knee replacement. A prospective randomised controlled trial of local infiltration versus single shot femoral nerve block. Knee 2013;20:324–7.[doi:10.1016/j.knee.2013.04.009](http://dx.doi.org/10.1016/j.knee.2013.04.009)pmid:http://www.ncbi.nlm.nih.gov/pubmed/23665124 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.knee.2013.04.009&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=23665124&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 125.Biswas A, Perlas A, Ghosh M, et al. Relative contributions of adductor canal block and intrathecal morphine to analgesia and functional recovery after total knee arthroplasty: a randomized controlled trial. Reg Anesth Pain Med 2018;43:1–160.[doi:10.1097/AAP.0000000000000724](http://dx.doi.org/10.1097/AAP.0000000000000724)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29315129 [FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo0OiJyYXBtIjtzOjU6InJlc2lkIjtzOjY6IjQzLzEvMSI7czo0OiJhdG9tIjtzOjQ0OiIvcmFwbS9lYXJseS8yMDIxLzA4LzI0L3JhcG0tMjAyMS0xMDI3NTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 126.Kampitak W, Tanavalee A, Ngarmukos S, et al. Comparison of adductor canal block versus local infiltration analgesia on postoperative pain and functional outcome after total knee arthroplasty: a randomized controlled trial. Malays Orthop J 2018;12:7–14.[doi:10.5704/MOJ.1803.002](http://dx.doi.org/10.5704/MOJ.1803.002)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29725506 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 127.Kardash K, Hickey D, Tessler MJ, et al. Obturator versus femoral nerve block for analgesia after total knee arthroplasty. Anesth Analg 2007;105:853–8.[doi:10.1213/01.ane.0000278158.36843.f7](http://dx.doi.org/10.1213/01.ane.0000278158.36843.f7)pmid:http://www.ncbi.nlm.nih.gov/pubmed/17717250 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1213/01.ane.0000278158.36843.f7&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=17717250&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000248924400046&link_type=ISI) 128.Kayupov E, Okroj K, Young AC, et al. Continuous adductor canal blocks provide superior ambulation and pain control compared to epidural analgesia for primary knee arthroplasty: a randomized, controlled trial. J Arthroplasty 2018;33:1040–4.[doi:10.1016/j.arth.2017.11.013](http://dx.doi.org/10.1016/j.arth.2017.11.013)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29233569 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 129.Safa B, Gollish J, Haslam L, et al. Comparing the effects of single shot sciatic nerve block versus posterior capsule local anesthetic infiltration on analgesia and functional outcome after total knee arthroplasty: a prospective, randomized, double-blinded, controlled trial. J Arthroplasty 2014;29:1149–53.[doi:10.1016/j.arth.2013.11.020](http://dx.doi.org/10.1016/j.arth.2013.11.020)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24559684 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1016/j.arth.2013.11.020&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=24559684&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 130.Rousseau-Saine N, Williams SR, Girard F, et al. The effect of adductor canal block on knee extensor muscle strength 6 weeks after total knee arthroplasty: a randomized, controlled trial. Anesth Analg 2018;126:1019–27.[doi:10.1213/ANE.0000000000002338](http://dx.doi.org/10.1213/ANE.0000000000002338)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28799964 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 131.Seet E, Leong WL, Yeo ASN, et al. Effectiveness of 3-in-1 continuous femoral block of differing concentrations compared to patient controlled intravenous morphine for post total knee arthroplasty analgesia and knee rehabilitation. Anaesth Intensive Care 2006;34:25–30.[doi:10.1177/0310057X0603400110](http://dx.doi.org/10.1177/0310057X0603400110)pmid:http://www.ncbi.nlm.nih.gov/pubmed/16494145 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=16494145&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000236209500005&link_type=ISI) 132.Singelyn FJ, Deyaert M, Joris D, et al. Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous three-in-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty. Anesth Analg 1998;87:88–92.[doi:10.1097/00000539-199807000-00019](http://dx.doi.org/10.1097/00000539-199807000-00019)pmid:http://www.ncbi.nlm.nih.gov/pubmed/9661552 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1097/00000539-199807000-00019&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=9661552&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) [Web of Science](http://rapm.bmj.com/lookup/external-ref?access_num=000074557500019&link_type=ISI) 133.Sundarathiti P, Ruananukul N, Channum T, et al. A comparison of continuous femoral nerve block (CFNB) and continuous epidural infusion (CEI) in postoperative analgesia and knee rehabilitation after total knee arthroplasty (TKA). J Med Assoc Thai 2009;92:328–34.pmid:http://www.ncbi.nlm.nih.gov/pubmed/19301724 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=19301724&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 134.Zhou M, Ding H, Ke J. Adductor canal block in combination with posterior capsular infiltration on the pain control after TKA. Ir J Med Sci 2018;187:465–71.[doi:10.1007/s11845-017-1647-3](http://dx.doi.org/10.1007/s11845-017-1647-3)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28687982 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 135.Antoni M, Jenny J-Y, Noll E. Postoperative pain control by intra-articular local anesthesia versus femoral nerve block following total knee arthroplasty: impact on discharge. Orthop Traumatol Surg Res 2014;100:313–6.[doi:10.1016/j.otsr.2013.12.022](http://dx.doi.org/10.1016/j.otsr.2013.12.022)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24703792 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 136.Beaupre LA, Johnston DBC, Dieleman S, et al. Impact of a preemptive multimodal analgesia plus femoral nerve blockade protocol on rehabilitation, hospital length of stay, and postoperative analgesia after primary total knee arthroplasty: a controlled clinical pilot study. Scientific World J 2012;2012:273821 [doi:10.1100/2012/273821](http://dx.doi.org/10.1100/2012/273821)pmid:22666096 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=22666096&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 137.Kirkness CS, Ren J, Asche CV. Significant improvement of mobility recovery in acute care patients after total knee arthroplasty with liposomal bupivacaine injectable suspension. J Acute Care Phys Ther 2017;8:11–19.[doi:10.1097/JAT.0000000000000043](http://dx.doi.org/10.1097/JAT.0000000000000043) 138.Liu Q, Chelly JE, Williams JP, et al. Impact of peripheral nerve block with low dose local anesthetics on analgesia and functional outcomes following total knee arthroplasty: a retrospective study. Pain Med 2015;16:998–1006.[doi:10.1111/pme.12652](http://dx.doi.org/10.1111/pme.12652)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25545781 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 139.Pope D, El-Othmani MM, Manning BT, et al. Impact of age, gender and anesthesia modality on post-operative pain in total knee arthroplasty patients. Iowa Orthop J 2015;35:92–8.pmid:http://www.ncbi.nlm.nih.gov/pubmed/26361449 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 140.Sporer SM, Rogers T. Postoperative pain management after primary total knee arthroplasty: the value of liposomal bupivacaine. J Arthroplasty 2016;31:2603–7.[doi:10.1016/j.arth.2016.05.012](http://dx.doi.org/10.1016/j.arth.2016.05.012)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27259389 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 141.Yamamoto N, Sakura S, Noda T, et al. Comparison of the postoperative analgesic efficacies of intravenous acetaminophen and fascia iliaca compartment block in hip fracture surgery: a randomised controlled trial. Injury 2019;50:1689–93.[doi:10.1016/j.injury.2019.03.008](http://dx.doi.org/10.1016/j.injury.2019.03.008)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30904248 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 142.Aksoy M, Dostbil A, Ince I, et al. Continuous spinal anaesthesia versus ultrasound-guided combined psoas compartment-sciatic nerve block for hip replacement surgery in elderly high-risk patients: a prospective randomised study. BMC Anesthesiol 2014;14:99. [doi:10.1186/1471-2253-14-99](http://dx.doi.org/10.1186/1471-2253-14-99)pmid:http://www.ncbi.nlm.nih.gov/pubmed/25414593 [CrossRef](http://rapm.bmj.com/lookup/external-ref?access_num=10.1186/1471-2253-14-99&link_type=DOI) [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=25414593&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 143.Jacob AK, Mantilla CB, Sviggum HP, et al. Perioperative nerve injury after total hip arthroplasty: regional anesthesia risk during a 20-year cohort study. Anesthesiology 2011;115:1172–8.[doi:10.1097/ALN.0b013e3182326c20](http://dx.doi.org/10.1097/ALN.0b013e3182326c20)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21934486 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=21934486&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 144.Fetherston CM, Ward S. Relationships between post operative pain management and short term functional mobility in total knee arthroplasty patients with a femoral nerve catheter: a preliminary study. J Orthop Surg Res 2011;6:7. [doi:10.1186/1749-799X-6-7](http://dx.doi.org/10.1186/1749-799X-6-7)pmid:http://www.ncbi.nlm.nih.gov/pubmed/21294923 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 145.Stuart Green M, Ryan Hoffman C, Iqbal U, et al. Transmuscular quadratus lumborum block reduces length of stay in patients receiving total hip arthroplasty. Anesth Pain Med 2018;8:e80233. [doi:10.5812/aapm.80233](http://dx.doi.org/10.5812/aapm.80233)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30719411 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 146.Kukreja P, MacBeth L, Sturdivant A, et al. Anterior quadratus lumborum block analgesia for total hip arthroplasty: a randomized, controlled study. Reg Anesth Pain Med 2019. doi:[doi:10.1136/rapm-2019-100804](http://dx.doi.org/10.1136/rapm-2019-100804). [Epub ahead of print: 25 Oct 2019].pmid:http://www.ncbi.nlm.nih.gov/pubmed/31653800 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 147.Gasanova I, Alexander JC, Estrera K, et al. Ultrasound-guided suprainguinal fascia iliaca compartment block versus periarticular infiltration for pain management after total hip arthroplasty: a randomized controlled trial. Reg Anesth Pain Med 2019;44:206–11.[doi:10.1136/rapm-2018-000016](http://dx.doi.org/10.1136/rapm-2018-000016)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30700615 [Abstract/FREE Full Text](http://rapm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicmFwbSI7czo1OiJyZXNpZCI7czo4OiI0NC8yLzIwNiI7czo0OiJhdG9tIjtzOjQ0OiIvcmFwbS9lYXJseS8yMDIxLzA4LzI0L3JhcG0tMjAyMS0xMDI3NTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 148.Good RP, Snedden MH, Schieber FC, et al. Effects of a preoperative femoral nerve block on pain management and rehabilitation after total knee arthroplasty. Am J Orthop 2007;36:554–7.pmid:http://www.ncbi.nlm.nih.gov/pubmed/18033568 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=18033568&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 149.Li D, Tan Z, Kang P, et al. Effects of multi-site infiltration analgesia on pain management and early rehabilitation compared with femoral nerve or adductor canal block for patients undergoing total knee arthroplasty: a prospective randomized controlled trial. Int Orthop 2017;41:75–83.[doi:10.1007/s00264-016-3278-0](http://dx.doi.org/10.1007/s00264-016-3278-0)pmid:http://www.ncbi.nlm.nih.gov/pubmed/27557955 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 150.Henson KS, Thomley JE, Lowrie LJ, et al. Comparison of selected outcomes associated with two postoperative analgesic approaches in patients undergoing total knee arthroplasty. Aana J 2019;87:51–7.pmid:http://www.ncbi.nlm.nih.gov/pubmed/31587744 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 151.Chan E-Y, Teo Y-H, Assam PN, et al. Functional discharge readiness and mobility following total knee arthroplasty for osteoarthritis: a comparison of analgesic techniques. Arthritis Care Res 2014;66:1688–94.[doi:10.1002/acr.22361](http://dx.doi.org/10.1002/acr.22361)pmid:http://www.ncbi.nlm.nih.gov/pubmed/24782108 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 152.Fenten MGE, Bakker SMK, Scheffer GJ, et al. Femoral nerve catheter vs local infiltration for analgesia in fast track total knee arthroplasty: short-term and long-term outcomes. Br J Anaesth 2018;121:850–8.[doi:10.1016/j.bja.2018.05.069](http://dx.doi.org/10.1016/j.bja.2018.05.069)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30236246 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 153.Goytizolo EA, Lin Y, Kim DH, et al. Addition of adductor canal block to periarticular injection for total knee replacement: a randomized trial. J Bone Joint Surg Am 2019;101:812–20.[doi:10.2106/JBJS.18.00195](http://dx.doi.org/10.2106/JBJS.18.00195)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31045669 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 154.Grosso MJ, Murtaugh T, Lakra A, et al. Adductor canal block compared with periarticular bupivacaine injection for total knee arthroplasty: a prospective randomized trial. J Bone Joint Surg Am 2018;100:1141–6.[doi:10.2106/JBJS.17.01177](http://dx.doi.org/10.2106/JBJS.17.01177)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29975272 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 155.Kulkarni MM, Dadheech AN, Wakankar HM, et al. Randomized prospective comparative study of adductor canal block vs periarticular infiltration on early functional outcome after unilateral total knee arthroplasty. J Arthroplasty 2019;34:2360–4.[doi:10.1016/j.arth.2019.05.049](http://dx.doi.org/10.1016/j.arth.2019.05.049)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31324354 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 156.Leung P, Dickerson DM, Denduluri SK, et al. Postoperative continuous adductor canal block for total knee arthroplasty improves pain and functional recovery: a randomized controlled clinical trial. J Clin Anesth 2018;49:46–52.[doi:10.1016/j.jclinane.2018.06.004](http://dx.doi.org/10.1016/j.jclinane.2018.06.004)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29890381 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 157.Tong QJ, Lim YC, Tham HM. Comparing adductor canal block with local infiltration analgesia in total knee arthroplasty: a prospective, blinded and randomized clinical trial. J Clin Anesth 2018;46:39–43.[doi:10.1016/j.jclinane.2018.01.014](http://dx.doi.org/10.1016/j.jclinane.2018.01.014)pmid:http://www.ncbi.nlm.nih.gov/pubmed/29414612 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 158.Wang Q, Yue Y, Li D, et al. Efficacy of single-shot adductor canal block combined with posterior capsular infiltration on postoperative pain and functional outcome after total knee arthroplasty: a prospective, double-blind, randomized controlled study. J Arthroplasty 2019;34:1650–5.[doi:10.1016/j.arth.2019.03.076](http://dx.doi.org/10.1016/j.arth.2019.03.076)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31060917 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 159.Cien AJ, Penny PC, Horn BJ, et al. Comparison between liposomal bupivacaine and femoral nerve block in patients undergoing primary total knee arthroplasty. J Surg Orthop Adv 2015;24:225–9.pmid:http://www.ncbi.nlm.nih.gov/pubmed/26731385 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 160.Gwam CU, Mistry JB, Richards IV, et al. Does addition of adductor canal blockade to multimodal periarticular analgesia improve discharge status, pain levels, opioid use, and length of stay after total knee arthroplasty? J Knee Surg 2018;31:184–8.[doi:10.1055/s-0037-1602131](http://dx.doi.org/10.1055/s-0037-1602131)pmid:http://www.ncbi.nlm.nih.gov/pubmed/28464196 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 161.Horn BJ, Cien A, Reeves NP, et al. Femoral nerve block vs periarticular bupivacaine liposome injection after primary total knee arthroplasty: effect on patient outcomes. J Am Osteopath Assoc 2015;115:714–9.[doi:10.7556/jaoa.2015.146](http://dx.doi.org/10.7556/jaoa.2015.146)pmid:http://www.ncbi.nlm.nih.gov/pubmed/26618816 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 162.Rames RD, Barrack TN, Barrack RL, et al. Effect of adductor canal block on acute perioperative pain and function in total knee arthroplasty. J Arthroplasty 2019;34:S164–7.[doi:10.1016/j.arth.2019.02.049](http://dx.doi.org/10.1016/j.arth.2019.02.049)pmid:http://www.ncbi.nlm.nih.gov/pubmed/30890391 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 163.Roberts C, Foster D, Shi GG, et al. A collaborative approach to pain control reduces in-hospital opioid use and improves range of motion following total knee arthroplasty. Cureus 2019;11:e4678. [doi:10.7759/cureus.4678](http://dx.doi.org/10.7759/cureus.4678)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31328069 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 164.Schwab P-E, Yombi J, Lavand'homme P, et al. Comparison of local infiltration analgesia with single injection femoral nerve block in total knee arthroplasty. Acta Orthop Belg 2019;85:122–9.pmid:http://www.ncbi.nlm.nih.gov/pubmed/31023209 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom) 165.Willett A, Lew R, Wardhan R. Is continuous proximal adductor canal analgesia with a periarticular injection comparable to continuous epidural analgesia for postoperative pain after total knee arthroplasty? A retrospective study. Rom J Anaesth Intensive Care 2019;26:9–15.[doi:10.2478/rjaic-2019-0002](http://dx.doi.org/10.2478/rjaic-2019-0002)pmid:http://www.ncbi.nlm.nih.gov/pubmed/31111090 [PubMed](http://rapm.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Frapm%2Fearly%2F2021%2F08%2F24%2Frapm-2021-102750.atom)