Article Text
Abstract
Introduction This research endeavors to investigate the phenomenon of intraneural spread across distinct locations: subcircumneurium, extrafascicular intraneural, intrafascicular intraneural, and intraperineurium after deliberate intraneural injections across five mammalian species. The study also aims to propose determinants influencing this spread. Furthermore, the investigation strives to ascertain the optimal animal species and needle configuration for extrapolating intraneural injection outcomes to human contexts.
Methods This study examined 60 sciatic nerves from 30 fresh and untreated cadavers of rats, rabbits, dogs, pigs, and sheep. The specimens were organized into five groups, each comprising an equal number of nerves. Histological assessments were performed on 30 nerves, involving fascicle metrics. The remaining 30 nerves underwent intentional intraneural injections, facilitated by 19G and 23G needles under ultrasound and direct visualization guidance.
Heparinized erythrocytes combined with a methylene blue solution were used as a marker to analyze the extent and patterns of intraneural spread. Needle orifice measurements were obtained, and these data were overlaid onto images of both nerves and needles. This enabled a comparative evaluation of sizes and an assessment of marker diffusion.
Results The findings indicated that sciatic nerves in rats, rabbits, and dogs were oligofascicular, characterized by larger fascicles, whereas pigs and sheep exhibited polyfascicular nerves comprised of numerous smaller fascicles. Fascicular diameters were variable across species, with dogs presenting the largest measurements. While intraneural spread was observed and documented, intrafascicular marker spreading was rare, occurring only in one rabbit specimen. Needle orifice attributes were scrutinized and visually depicted.
Conclusions Despite the formidable challenges associated with the practical realization of intrafascicular injection, the utilization of animal models possessing monofascicular or oligofascicular nerves, such as rats, rabbits, and dogs, in conjunction with needles featuring aperture dimensions surpassing those of the fascicles, likely contributes to the compromised reliability of investigations into intraneural injection outcomes.
- peripheral nerve injuries
- anesthesia, conduction
- nerve block
Data availability statement
All data relevant to the study are included in the article or uploaded as online supplemental information.
Statistics from Altmetric.com
Data availability statement
All data relevant to the study are included in the article or uploaded as online supplemental information.
Footnotes
X @marcosperez_vh
Correction notice This article has been corrected since it published Online First. The title has been amended.
Contributors AS: project development, data collection and management, data analysis, and manuscript writing. AP-B: data collection and data analysis, manuscript writing, and editing. MP-C: data collection and data analysis. ME-C: data collection and data analysis. FL: data collection and data analysis. MAR: project development, data collection and management, data analysis, manuscript writing and guarantor.
Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.