Article Text
Abstract
Background and Objectives: Epithelial tissue coring by spinal needles during subarachnoid injections may cause intraspinal epidermal tumors. Previous studies have investigated tissue transfer with different needle types during subarachnoid or epidural injection. This study deals with the transfer of epithelial tissue during combined spinal-epidural (CSE) anesthesia.
Methods: We studied 68 American Society of Anesthesiologists I to III adult patients. CSE anesthesia was induced under aseptic conditions at the L2-3 or L3-4 interspace with patients in the lateral decubitus position. Cerebral spinal fluid, spinal needle stylet, fluid used to flush the interior of the spinal needle, fluid used to wash the exterior of the spinal needle, fluid used to flush the interior of the epidural needle, and fluid used to wash the exterior tip of the epidural needle were examined under light microscopy (n = 30 patients) or incubated in a cell-culture medium (n = 38 patients). Samples were incubated in cell-culture medium alone (n = 13) or in a cell-culture medium for 3 weeks and then in a medium with epidermal growth factor (n = 25). As a positive control, skin tissue samples were taken by punch biopsy from 10 randomly chosen patients who underwent CSE interventions. These samples were incubated in an enriched medium serum.
Results: Light microscopy revealed that there was cell transfer in all phases in various rates: samples 1, 2, 3, 4, 5, and 6 contained epithelial cells and debris in ratios of 6.9%, 20.7%, 6.9%, 20.7%, 26.7%, and 33.3%, respectively. Epithelial cell colonization was detected in the cell-culture samples taken from the control group but not in the samples taken from the CSE group.
Conclusions: We could not reproduce the cells or cell debris obtained during the CSE interventions in vivo, which can be explained by a possible structural deformation of cells or the inadequacy of the amount of cells that were transferred.
- Combined spinal epidural intervention
- Tissue coring
- Cell transferring
- Light microscopy
- Cell culture